Advertisement

Food and Bioprocess Technology

, Volume 11, Issue 11, pp 1955–1973 | Cite as

Bionanocomposite Films Prepared from Corn Starch With and Without Nanopackaged Jamaica (Hibiscus sabdariffa) Flower Extract

  • Luis A. Toro-Márquez
  • Danila Merino
  • Tomy J. Gutiérrez
Original Paper
  • 180 Downloads

Abstract

Active and pH-sensitive nano-fillers were prepared from natural and modified montmorillonite (Mnt) and nanopackaged with anthocyanins extracted from the Jamaica (Hibiscus sabdariffa) flower. These were then used to reinforce corn (Zea mays) starch-based films plasticized with glycerol, and processed by extrusion and thermo-molding. Seven film systems were investigated for their potential as “active and intelligent” (A&I) bionanocomposite films with improved properties. The thermal and mechanical properties of the bionanocomposite films obtained were enhanced largely due to the added modified clay nano-fillers, and the nanopackaging of the anthocyanins between the nano-clay layers. Unfortunately, however, the bionanocomposite films failed as A&I materials, despite the supposed effect of the nano-clays as protective nano-encapsulating materials for the active and pH-sensitive compound (anthocyanins). The results obtained suggest that the exfoliation of the nano-fillers as a consequence of the shear forces inside the extruder led to the exposure of the anthocyanins during extrusion. Because of this, we consider the large-scale development of A&I biodegradable films incorporating natural pigments very unlikely being processed by extrusion/thermo-molding, since there are several significant processes involved in the techniques currently available in the food and polymer industries that leave the active and pH-sensitive compounds unprotected.

Keywords

Food packaging Mechanical properties Nanopackaging Thermoplastic starch 

Notes

Acknowledgements

The authors would like to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Postdoctoral fellowship internal PDTS-Resolution 2417), Universidad Nacional de Mar del Plata (UNMdP) for financial support, and Dr. Mirian Carmona-Rodríguez for their valuable contribution. Many thanks also to Andres Torres Nicolini for all the assistance he provided in this research.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abreu, A. S., Oliveira, M., de Sá, A., Rodrigues, R. M., Cerqueira, M. A., Vicente, A. A., & Machado, A. V. (2015). Antimicrobial nanostructured starch based films for packaging. Carbohydrate Polymers, 129, 127–134.  https://doi.org/10.1016/j.carbpol.2015.04.021.CrossRefPubMedGoogle Scholar
  2. Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. International Journal of Food Science & Technology, 44(6), 1263–1271.  https://doi.org/10.1111/j.1365-2621.2009.01956.x.CrossRefGoogle Scholar
  3. Alvarez, V., Vazquez, A., & Bernal, C. (2006). Effect of microstructure on the tensile and fracture properties of sisal fiber/starch-based composites. Journal of Composite Materials, 40(1), 21–35.  https://doi.org/10.1177/0021998305053508. CrossRefGoogle Scholar
  4. Álvarez, K., Famá, L., & Gutiérrez, T. J. (2017). Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in Physicochemical Properties of Biopolymers: Part 1 (pp. 358–400). Bentham Science Publishers.  https://doi.org/10.2174/9781681084534117010015.
  5. ASTM E96-00e1. (2000). Standard test methods for water vapor transmission of materials. ASTM International, West Conshohocken.  https://doi.org/10.1520/E0096-00E01.
  6. Bernal, C. R. (2016). Fracture and failure of starch-based composites. In P. M. V. & L. Yu (Eds.), Starch-based Blends, composites and nanocomposites (pp. 326–351). Royal Society of Chemistry.  https://doi.org/10.1039/9781782622796-00326.
  7. von Borries-Medrano, E., Jaime-Fonseca, M. R., & Aguilar-Méndez, M. A. (2016). Starch-guar gum extrudates: Microstructure, physicochemical properties and in-vitro digestion. Food Chemistry, 194, 891–899.  https://doi.org/10.1016/j.foodchem.2015.08.085.CrossRefGoogle Scholar
  8. Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids, 68, 136–148.  https://doi.org/10.1016/j.foodhyd.2016.09.009.CrossRefGoogle Scholar
  9. Chevalier, E., Assezat, G., Prochazka, F., & Oulahal, N. (2018). Development and characterization of a novel edible extruded sheet based on different casein sources and influence of the glycerol concentration. Food Hydrocolloids, 75, 182–191.  https://doi.org/10.1016/j.foodhyd.2017.08.028.CrossRefGoogle Scholar
  10. Choi, I., Lee, J. Y., Lacroix, M., & Han, J. (2017). Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry, 218, 122–128.  https://doi.org/10.1016/j.foodchem.2016.09.050.CrossRefPubMedGoogle Scholar
  11. Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 45(4), 967–984.  https://doi.org/10.1016/j.eurpolymj.2009.01.027.CrossRefGoogle Scholar
  12. Cotterell, B., Chia, J. Y. H., & Hbaieb, K. (2007). Fracture mechanisms and fracture toughness in semicrystalline polymer nanocomposites. Engineering Fracture Mechanics, 74(7), 1054–1078.  https://doi.org/10.1016/j.engfracmech.2006.12.023.CrossRefGoogle Scholar
  13. FAO. Food and Agriculture Organization of the United Nations. (2012). Pérdidas y desperdicio de alimentos en el mundo-Alcance, causas y prevención. Retrieved from http://www.fao.org/docrep/016/i2697s/i2697s.pdf
  14. García-Tejeda, Y. V., López-González, C., Pérez-Orozco, J. P., Rendón-Villalobos, R., Jiménez-Pérez, A., Flores-Huicochea, E., Solorza-Feria, J., & Bastida, C. A. (2013). Physicochemical and mechanical properties of extruded laminates from native and oxidized banana starch during storage. LWT - Food Science and Technology, 54(2), 447–455.  https://doi.org/10.1016/j.lwt.2013.05.041.CrossRefGoogle Scholar
  15. Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products, 33(1), 229–235.  https://doi.org/10.1016/j.indcrop.2010.10.016.CrossRefGoogle Scholar
  16. Gutiérrez, T. J. (2017). Effects of exposure to pulsed light on molecular aspects of edible films made from cassava and taro starch. Innovative Food Science & Emerging Technologies, 41, 387–396.  https://doi.org/10.1016/j.ifset.2017.04.014.CrossRefGoogle Scholar
  17. Gutiérrez, T. J. (2018). Active and intelligent films made from starchy sources/blackberry pulp. Journal of Polymers and the Environment, 26(6), 2374–2391.  https://doi.org/10.1007/s10924-017-1134-y.CrossRefGoogle Scholar
  18. Gutiérrez, T. J., & Álvarez, K. (2017). Transport phenomena in biodegradable and edible films. In M. A. Masuelli (Ed.), Biopackaging (pp. 59–89). CRC Press Taylor & Francis Group Retrieved from https://www.crcpress.com/Biopackaging/Masuelli/p/book/9781498749688.
  19. Gutiérrez, T. J., & Alvarez, V. A. (2017a). Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polymer Bulletin, 74(6), 2401–2430.  https://doi.org/10.1007/s00289-016-1814-0.CrossRefGoogle Scholar
  20. Gutiérrez, T. J., & Alvarez, V. A. (2017b). Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydrate Polymers, 178, 260–269.  https://doi.org/10.1016/j.carbpol.2017.09.026.CrossRefPubMedGoogle Scholar
  21. Gutiérrez, T. J., & Alvarez, V. A. (2017c). Properties of native and oxidized corn starch/polystyrene blends under conditions of reactive extrusion using zinc octanoate as a catalyst. Reactive and Functional Polymers, 112, 33–44.  https://doi.org/10.1016/j.reactfunctpolym.2017.01.002.CrossRefGoogle Scholar
  22. Gutiérrez, T. J., & Alvarez, V. A. (2018). Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocolloids, 77, 407–420.  https://doi.org/10.1016/j.foodhyd.2017.10.017.CrossRefGoogle Scholar
  23. Gutiérrez, T. J., Tapia, M. S., Pérez, E., & Famá, L. (2015). Edible films based on native and phosphated 80:20 waxy: normal corn starch. Starch - Stärke, 67(1–2), 90–97.  https://doi.org/10.1002/star.201400164.CrossRefGoogle Scholar
  24. Gutiérrez, T. J., Ponce, A. G., & Alvarez, V. A. (2017). Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Materials Chemistry and Physics, 194, 283–292.  https://doi.org/10.1016/j.matchemphys.2017.03.052.CrossRefGoogle Scholar
  25. Gutiérrez, T. J., León, I. E., Ponce, A. G., & Alvarez, V. A. (2018). Stabilizing effect of montmorillonite on anthocyanins extracted from Jamaica (Hibiscus sabdariffa) flowers: characterization and assessment of cytotoxicity. Food Packaging and Shelf Life. In press.Google Scholar
  26. Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting, 13(4), 287–298.  https://doi.org/10.1177/875608799701300405.CrossRefGoogle Scholar
  27. Iman, M., & Maji, T. K. (2012). Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohydrate Polymers, 89(1), 290–297.  https://doi.org/10.1016/j.carbpol.2012.03.012.CrossRefPubMedGoogle Scholar
  28. ISO 527-2. (2012). Determination of tensile properties of plastics. Retrieved from https://www.iso.org/obp/ui/#iso:std:56046:en
  29. Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., Liu, H., & Chen, L. (2011). Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 106(1), 95–101.  https://doi.org/10.1016/j.jfoodeng.2011.04.021.CrossRefGoogle Scholar
  30. Liu, B., Xu, H., Zhao, H., Liu, W., Zhao, L., & Li, Y. (2017). Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers, 157, 842–849.  https://doi.org/10.1016/j.carbpol.2016.10.067.CrossRefPubMedGoogle Scholar
  31. Luchese, C. L., Frick, J. M., Patzer, V. L., Spada, J. C., & Tessaro, I. C. (2015). Synthesis and characterization of biofilms using native and modified pinhão starch. Food Hydrocolloids, 45, 203–210.  https://doi.org/10.1016/j.foodhyd.2014.11.015.CrossRefGoogle Scholar
  32. Luchese, C. L., Garrido, T., Spada, J. C., Tessaro, I. C., & de la Caba, K. (2018). Development and characterization of cassava starch films incorporated with blueberry pomace. International Journal of Biological Macromolecules, 106, 834–839.  https://doi.org/10.1016/j.ijbiomac.2017.08.083.CrossRefPubMedGoogle Scholar
  33. Ludueña, L., Morán, J., & Alvarez, V. (2015). Biodegradable polymer/clay nanocomposites. In V. K. Thakur & M. K. Thakur (Eds.), Eco-friendly polymer nanocomposites: processing and properties (pp. 109–135). New Delhi: Springer India.  https://doi.org/10.1007/978-81-322-2470-9_4.CrossRefGoogle Scholar
  34. Ma, Q., & Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical, 235, 401–407.  https://doi.org/10.1016/j.snb.2016.05.107.CrossRefGoogle Scholar
  35. Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283–289.  https://doi.org/10.1016/j.carbpol.2005.01.003.CrossRefGoogle Scholar
  36. Miller, N. J., & Rice-Evans, C. A. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research, 26(3), 195–199.  https://doi.org/10.3109/10715769709097799.CrossRefPubMedGoogle Scholar
  37. Moreno, O., Cárdenas, J., Atarés, L., & Chiralt, A. (2017). Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, 178, 147–158.  https://doi.org/10.1016/j.carbpol.2017.08.128.CrossRefPubMedGoogle Scholar
  38. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2011). Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33(3), 605–610.  https://doi.org/10.1016/j.indcrop.2010.12.021.CrossRefGoogle Scholar
  39. Pereira, V. A., de Arruda, I. N. Q., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocolloids, 43, 180–188.  https://doi.org/10.1016/j.foodhyd.2014.05.014.CrossRefGoogle Scholar
  40. Pérez, E., Pérez, C. J., Alvarez, V. A., & Bernal, C. (2013). Fracture behavior of a commercial starch/polycaprolactone blend reinforced with different layered silicates. Carbohydrate Polymers, 97(2), 269–276.  https://doi.org/10.1016/j.carbpol.2013.04.099.CrossRefPubMedGoogle Scholar
  41. Rhim, J.-W., & Kim, Y.-T. (2014). Biopolymer-based composite packaging materials with nanoparticles. In S. L. Taylor (Ed.), Innovations in Food Packaging (second ed., pp. 413–442). Amsterdam: Elsevier.  https://doi.org/10.1016/B978-0-12-394601-0.00017-5.CrossRefGoogle Scholar
  42. Rincón, M., Tapia, M. S., & Padilla, F. (2003). Evaluación de fitoquímicos en el exocarpio (cáscara) de algunas frutas cultivadas en Venezuela. Revista Facultad de Farmacia, 66(2), 73–78.Google Scholar
  43. Risch, S. J. (2009). Food packaging history and innovations. Journal of Agricultural and Food Chemistry, 57(18), 8089–8092.  https://doi.org/10.1021/jf900040r.CrossRefPubMedGoogle Scholar
  44. Romero-Bastida, C. A., Tapia-Blácido, D. R., Méndez-Montealvo, G., Bello-Pérez, L. A., Velázquez, G., & Alvarez-Ramirez, J. (2016). Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydrate Polymers, 152, 351–360.  https://doi.org/10.1016/j.carbpol.2016.07.009.CrossRefPubMedGoogle Scholar
  45. Slavutsky, A. M., Bertuzzi, M. A., & Armada, M. (2012). Water barrier properties of starch-clay nanocomposite films. Brazilian Journal of Food Technology, 15(3), 208–218 Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1981-67232012000300004&nrm=iso.CrossRefGoogle Scholar
  46. Vasanthan, T., & Hoover, R. (1992). Effect of defatting on starch structure and physicochemical properties. Food Chemistry, 45(5), 337–347.  https://doi.org/10.1016/0308-8146(92)90034-Y.CrossRefGoogle Scholar
  47. Vazquez, A., Cyras, V. P., Alvarez, V. A., & Moran, J. I. (2012). Starch/clay nano-biocomposites. In L. Avérous & E. Pollet (Eds.), Environmental Silicate Nano-Biocomposites (pp. 287–321). London: Springer London.  https://doi.org/10.1007/978-1-4471-4108-2_11.CrossRefGoogle Scholar
  48. Wilpiszewska, K., Antosik, A. K., & Spychaj, T. (2015). Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films. Carbohydrate Polymers, 128, 82–89.  https://doi.org/10.1016/j.carbpol.2015.04.023.CrossRefPubMedGoogle Scholar
  49. Xie, D. F., Martino, V. P., Sangwan, P., Way, C., Cash, G. A., Pollet, E., Dean, K. M., Halley, P. J., & Avérous, L. (2013). Elaboration and properties of plasticised chitosan-based exfoliated nano-biocomposites. Polymer, 54(14), 3654–3662.  https://doi.org/10.1016/j.polymer.2013.05.017.CrossRefGoogle Scholar
  50. Xie, M., Duan, Y., Li, F., Wang, X., Cui, X., Bacha, U., Zhu, M. P., Xiao, Z., & Zhao, Z. (2017). Preparation and characterization of modified and functional starch (hexadecyl corboxymethyl starch) ether using reactive extrusion. Starch - Stärke, 69(5–6), 1600061.  https://doi.org/10.1002/star.201600061.CrossRefGoogle Scholar
  51. Yoshida, C. M. P., Maciel, V. B. V., Mendonça, M. E. D., & Franco, T. T. (2014). Chitosan biobased and intelligent films: monitoring pH variations. LWT - Food Science and Technology, 55(1), 83–89.  https://doi.org/10.1016/j.lwt.2013.09.015.CrossRefGoogle Scholar
  52. Zeppa, C., Gouanvé, F., & Espuche, E. (2009). Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: thermal, water-sorption, and oxygen-barrier properties. Journal of Applied Polymer Science, 112(4), 2044–2056.  https://doi.org/10.1002/app.29588.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo de Polímeros, Departamento de Ciencia de los MaterialesUniversidad Simón Bolívar (USB)CaracasVenezuela
  2. 2.Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de IngenieríaUniversidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Mar del PlataArgentina

Personalised recommendations