Advertisement

Food and Bioprocess Technology

, Volume 11, Issue 10, pp 1895–1903 | Cite as

Effect of Subcritical Water on the Extraction of Bioactive Compounds from Carrot Leaves

  • Rui Song
  • Marliya Ismail
  • Saeid Baroutian
  • Mohammed Farid
Original Paper
  • 166 Downloads

Abstract

Carrot leaves, which are generally considered as agricultural residue, are rich in bioactive compounds, such as polyphenols. This study investigates the extraction of polyphenols and luteolin (flavonoid) from freeze-dried and ground carrot leaves (d < 100 μm) using subcritical water (SCW). Water at elevated temperatures and at high pressure (40 bar) could behave as low-polar solvent to enhance extraction of organic compounds. SCW was investigated at different temperatures (110–230 °C), time (0–114 min), and solid-liquid ratio (15 and 35 g/L). Accordingly, it was revealed that total phenolic content (TPC) from carrot leaves using SCW has an increasing trend with temperature and resulted in 42.83 ± 1.85 mg per g of dry weight in gallic acid equivalent at 210 °C/113.5 min. However, luteolin content using SCW extraction behaved differently, where increase of temperature adversely affected its content. Hot water extraction studies revealed the presence of optimum luteolin content (0.768 ± 0.009-mg/g dry weight) at 120 °C for 10 min. In conclusion, it was shown that carrot leaves are a promising feedstock to extract polyphenols that has high content of luteolin.

Keywords

Subcritical water Carrot leaves Polyphenol Luteolin 

Notes

Funding Information

This research was carried out as part of the Food Industry Enabling Technologies (FIET) program funded by the New Zealand Ministry of Business, Innovation, and Employment (contract MAUX1402).

References

  1. Aliakbarian, B., Fathi, A., Perego, P., & Dehghani, F. (2012). Extraction of antioxidants from winery wastes using subcritical water. The Journal of Supercritical Fluids, 65, 18–24.CrossRefGoogle Scholar
  2. Almeida, V. V. d., Bonafé, E. G., Muniz, E. C., Matsushita, M., Souza, N. E. D., & Visentainer, J. V. (2009). Optimization of the carrot leaf dehydration aiming at the preservation of omega-3 fatty acids. Química Nova, 32(5), 1334–1337.CrossRefGoogle Scholar
  3. Anekpankul, T., Goto, M., Sasaki, M., Pavasant, P., & Shotipruk, A. (2007). Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Separation and Purification Technology, 55(3), 343–349.CrossRefGoogle Scholar
  4. Babbar, N., Oberoi, H. S., Uppal, D. S., & Patil, R. T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44(1), 391–396.CrossRefGoogle Scholar
  5. Bhagat, J., Lobo, R., Kumar, N., Mathew, J. E., & Pai, A. (2014). Cytotoxic potential of Anisochilus carnosus (L.f.) wall and estimation of luteolin content by HPLC. BMC Complementary and Alternative Medicine, 14(1), 421.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bowman, M. J., & Simon, P. W. (2013). Quantification of the relative abundance of plastome to nuclear genome in leaf and root tissues of carrot (Daucus carota L.) using quantitative PCR. Plant Molecular Biology Reporter, 31(4), 1040–1047.CrossRefGoogle Scholar
  7. Bucić-Kojić, A., Planinić, M., Tomas, S., Bilić, M., & Velić, D. (2007). Study of solid–liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering, 81(1), 236–242.CrossRefGoogle Scholar
  8. Çam, M., & Hışıl, Y. (2010). Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry, 123(3), 878–885.CrossRefGoogle Scholar
  9. Carr, A. G., Mammucari, R., & Foster, N. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal, 172(1), 1–17.CrossRefGoogle Scholar
  10. Casazza, A. A., Aliakbarian, B., & Perego, P. (2011). Recovery of phenolic compounds from grape seeds: effect of extraction time and solid–liquid ratio. Natural Product Research, 25(18), 1751–1761.CrossRefPubMedGoogle Scholar
  11. Cerrato, A., De Santis, D., & Moresi, M. (2002). Production of luteolin extracts from Reseda luteola and assessment of their dyeing properties. Journal of the Science of Food and Agriculture, 82(10), 1189–1199.CrossRefGoogle Scholar
  12. Chaaban, H., Ioannou, I., Chebil, L., Slimane, M., Gérardin, C., Paris, C., Charbonnel, C., Chekir, L., & Ghoul, M. (2017). Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. Journal of Food Processing and Preservation, 41(5).Google Scholar
  13. Chainukool, S., Goto, M., Hannongbua, S., & Shotipruk, A. (2014). Subcritical water extraction of resveratrol from barks of Shorea roxburghii G. Don. Separation Science and Technology, 49(13), 2073–2078.CrossRefGoogle Scholar
  14. Chen, D., Bi, A., Dong, X., Jiang, Y., Rui, B., Liu, J., Yin, Z., & Luo, L. (2014). Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages. Biochemical and Biophysical Research Communications, 443(1), 326–332.CrossRefPubMedGoogle Scholar
  15. Chu, Y. H., Chang, C. L., & Hsu, H. F. (2000). Flavonoid content of several vegetables and their antioxidant activity. Journal of the Science of Food and Agriculture, 80(5), 561–566.CrossRefGoogle Scholar
  16. Díaz-García, M. C., Castellar, M. R., Obón, J. M., Obón, C., Alcaraz, F., & Rivera, D. (2015). Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods. Journal of the Science of Food and Agriculture, 95(6), 1283–1293.CrossRefPubMedGoogle Scholar
  17. Fu, Y.-J., Liu, W., Zu, Y.-G., Tong, M.-H., Li, S.-M., Yan, M., Efferth, T., & Luo, H. (2008). Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanuscajan (L.) Millsp.] leaves. Food Chemistry, 111(2), 508–512.CrossRefPubMedGoogle Scholar
  18. Han, D., & Row, K. H. (2011). Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. Journal of the Science of Food and Agriculture, 91(15), 2888–2892.CrossRefPubMedGoogle Scholar
  19. He, L., Zhang, X., Xu, H., Xu, C., Yuan, F., Knez, Ž., Novak, Z., & Gao, Y. (2012). Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC–ABTS+ assay. Food and Bioproducts Processing, 90(2), 215–223.CrossRefGoogle Scholar
  20. Hu, C., & Kitts, D. D. (2004). Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264. 7 cells. Molecular and Cellular Biochemistry, 265(1), 107–113.CrossRefPubMedGoogle Scholar
  21. Ju, Z., & Howard, L. R. (2005). Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. Journal of Food Science, 70(4).Google Scholar
  22. Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954–3962.CrossRefPubMedGoogle Scholar
  23. Kaur, C., & Kapoor, H. C. (2002). Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science & Technology, 37(2), 153–161.CrossRefGoogle Scholar
  24. Ko, M.-J., Cheigh, C.-I., Cho, S.-W., & Chung, M.-S. (2011). Subcritical water extraction of flavonol quercetin from onion skin. Journal of Food Engineering, 102(4), 327–333.CrossRefGoogle Scholar
  25. Ko, M.-J., Cheigh, C.-I., & Chung, M.-S. (2014). Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chemistry, 143, 147–155.CrossRefPubMedGoogle Scholar
  26. Kumar, M. Y., Dutta, R., Prasad, D., & Misra, K. (2011). Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chemistry, 127(3), 1309–1316.CrossRefPubMedGoogle Scholar
  27. KyoungAh, L., Kim, K.-T., Nah, S.-Y., Chung, M.-S., Cho, S., & Paik, H.-D. (2011). Antimicrobial and antioxidative effects of onion peel extracted by the subcritical water. Food Science and Biotechnology, 20(2), 543–548.CrossRefGoogle Scholar
  28. KyoungAh, L., Kim, W. J., Kim, H. J., Kim, K.-T., & Paik, H.-D. (2013). Antibacterial activity of Ginseng (Panax ginseng CA Meyer) stems–leaves extract produced by subcritical water extraction. International Journal of Food Science & Technology, 48(5), 947–953.CrossRefGoogle Scholar
  29. Leite, C. W., Boroski, M., Boeing, J. S., Aguiar, A. C., França, P. B., Souza, N. E. D., & Visentainer, J. (2011). Chemical characterization of leaves of organically grown carrot Dacus carota L. in various stages of development for use as food. Food Science and Technology (Campinas), 31(3), 735–738.CrossRefGoogle Scholar
  30. Mukhopadhyay, S., Luthria, D. L., & Robbins, R. J. (2006). Optimization of extraction process for phenolic acids from black cohosh (Cimicifuga racemosa) by pressurized liquid extraction. Journal of the Science of Food and Agriculture, 86(1), 156–162.CrossRefGoogle Scholar
  31. Murakami, M., Yamaguchi, T., Takamura, H., & Atoba, T. (2004). Effects of thermal treatment on radical-scavenging activity of single and mixed polyphenolic compounds. Journal of Food Science, 69(1), 7–10.CrossRefGoogle Scholar
  32. Pang, P., Liu, Y., Zhang, Y., Gao, Y., & Hu, Q. (2014). Electrochemical determination of luteolin in peanut hulls using graphene and hydroxyapatite nanocomposite modified electrode. Sensors and Actuators B: Chemical, 194, 397–403.CrossRefGoogle Scholar
  33. Peng, B., & Yan, W. (2009). Solubility of luteolin in ethanol+ water mixed solvents at different temperatures. Journal of Chemical & Engineering Data, 55(1), 583–585.CrossRefGoogle Scholar
  34. Rababah, T. M., Hettiarachchy, N. S., & Horax, R. (2004). Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. Journal of Agricultural and Food Chemistry, 52(16), 5183–5186.CrossRefPubMedGoogle Scholar
  35. Rajasekaran, A., Sarathikumar, N., Kalaiselvan, V., & Kalaivani, M. (2014). Simultaneous estimation of luteolin and apigenin in methanol leaf extract of Bacopa monnieri Linn by HPLC. British Journal of Pharmaceutical Research, 4(13), 1629–1637.CrossRefGoogle Scholar
  36. Roy, S., Mallick, S., Chakraborty, T., Ghosh, N., Singh, A. K., Manna, S., & Majumdar, S. (2015). Synthesis, characterisation and antioxidant activity of luteolin–vanadium (II) complex. Food Chemistry, 173, 1172–1178.CrossRefPubMedGoogle Scholar
  37. Sawmiller, D., Li, S., Shahaduzzaman, M., Smith, A. J., Obregon, D., Giunta, B., Borlongan, C., Sandberg, P. R., & Tan, J. (2014). Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. International Journal of Molecular Sciences, 15(1), 895–904.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Scalbert, A., & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. The Journal of Nutrition, 130(8), 2073S–2085S.CrossRefPubMedGoogle Scholar
  39. Silva, E., Rogez, H., & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology, 55(3), 381–387.CrossRefGoogle Scholar
  40. Simon, P. W., Freeman, R. E., Vieira, J. V., Boiteux, L. S., Briard, M., Nothnagel, T., Michalik, B., & Kwon, Y. S. (2008). Carrot vegetables II (pp. 327–357). New York: Springer.CrossRefGoogle Scholar
  41. Škerget, M., Kotnik, P., Hadolin, M., Hraš, A. R., Simonič, M., & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2), 191–198.CrossRefGoogle Scholar
  42. Sólyom, K., Solá, R., Cocero, M. J., & Mato, R. B. (2014). Thermal degradation of grape marc polyphenols. Food Chemistry, 159, 361–366.CrossRefPubMedGoogle Scholar
  43. Sun, J., Liu, J., & Wang, Z. (2015). Application of tea polyphenols to edible oil as antioxidant by W/O microemulsion. Journal of Dispersion Science and Technology, 36(11), 1539–1547.CrossRefGoogle Scholar
  44. Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), 2484–2494.CrossRefPubMedGoogle Scholar
  45. Tunchaiyaphum, S., Eshtiaghi, M., & Yoswathana, N. (2013). Extraction of bioactive compounds from mango peels using green technology. International Journal of Chemical Engineering and Applications, 4(4), 194–198.CrossRefGoogle Scholar
  46. Turkmen, N., Sari, F., & Velioglu, Y. S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chemistry, 99(4), 835–841.CrossRefGoogle Scholar
  47. Vázquez, C. V., Rojas, M. G. V., Ramírez, C. A., Chávez-Servín, J. L., García-Gasca, T., Martínez, R. A. F., Castellote, A., & de la Torre-Carbot, K. (2015). Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin–Ciocalteu method. Food Chemistry, 176, 480–486.CrossRefPubMedGoogle Scholar
  48. Vergara-Salinas, J. R., Pérez-Jiménez, J., Torres, J. L., Agosin, E., & Pérez-Correa, J. R. (2012). Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). Journal of Agricultural and Food Chemistry, 60(44), 10920–10929.CrossRefPubMedGoogle Scholar
  49. Vergara-Salinas, J. R., Bulnes, P., Zúñiga, M. C., Pérez-Jiménez, J., Torres, J. L., Mateos-Martín, M. L., Agosin, E., & Pérez-Correa, J. R. (2013). Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. Journal of Agricultural and Food Chemistry, 61(28), 6929–6936.CrossRefPubMedGoogle Scholar
  50. Wang, Q., & Xie, M. (2010). Antibacterial activity and mechanism of luteolin on Staphylococcus aureus. Acta Microbiologica Sinica, 50(9), 1180–1184.PubMedGoogle Scholar
  51. Warman, P. R., & Havard, K. (1997). Yield, vitamin and mineral contents of organically and conventionally grown carrots and cabbage. Agriculture, Ecosystems & Environment, 61(2), 155–162.CrossRefGoogle Scholar
  52. Wohlfarth, C. (2008). Dielectric constant of ethanol. In M. D. Lechner (Ed.), Supplement to IV/6 (pp. 133–139). Berlin: Springer Berlin Heidelberg.Google Scholar
  53. Xiao, J., Zhao, Y., Wang, H., Yuan, Y., Yang, F., Zhang, C., & Yamamoto, K. (2011). Noncovalent interaction of dietary polyphenols with common human plasma proteins. Journal of Agricultural and Food Chemistry, 59(19), 10747–10754.CrossRefPubMedGoogle Scholar
  54. Yang, Y., Belghazi, M., Lagadec, A., Miller, D. J., & Hawthorne, S. B. (1998). Elution of organic solutes from different polarity sorbents using subcritical water. Journal of Chromatography A, 810(1), 149–159.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rui Song
    • 1
  • Marliya Ismail
    • 1
  • Saeid Baroutian
    • 1
  • Mohammed Farid
    • 1
  1. 1.Department of Chemical and Materials EngineeringUniversity of AucklandAucklandNew Zealand

Personalised recommendations