Food and Bioprocess Technology

, Volume 11, Issue 7, pp 1370–1380 | Cite as

Development of a Novel Integrated Approach to Monitor Processing of Cassava Roots into Gari: Macroscopic and Microscopic Scales

  • Andrés Escobar
  • Layal Dahdouh
  • Eric Rondet
  • Julien Ricci
  • Dominique Dufour
  • Thierry Tran
  • Bernard Cuq
  • Michèle DelalondeEmail author
Original Paper


Gari is a key staple food in several western African countries. This is a cassava traditional semolina obtained after peeling, rasping, fermentation, pressing, sieving, and roasting (cooking/drying). The process of gari production is artisanal and relies on human know-how, and the final properties of gari are highly dependent on the human skills. So as to understand the combined effect of the various transformation steps on the final quality of gari, the main objective of this work was to develop a lab-scale integrated approach to follow the transformation of the product characteristics during the process using macroscopic (water content, solid volume fraction, and particles size) and microscopic (physicochemical and biochemical) responses. At the microscopic level, pressing is a key step insofar as it induces the draining of many soluble compounds (especially the toxic cyanogenic compounds). At the macroscopic level, despite the strong similarity in median diameters of the intermediate and final products, two distinct agglomeration mechanisms occurred during the pressing/sieving and the roasting. These mechanisms highlight the structuration of the product at two different scales and at two different moments. Finally, results showed a high swelling capacity for fermented gari. The approach developed in this work will make it possible to identify the robust mechanisms, i.e., those little affected by a change in scale or in operating conditions. This identification will thereafter allow to distinguish unit operations, fairly easy to mechanize, from those requiring strict control to achieve the final product quality sought.


Cassava Gari Lab-scale processing Physicochemical properties Hydro-textural diagram 


Funding Information

This work was supported by the CIAT Cassava Project (Colombia), CIRAD Qualisud Research Unit, and CIRAD - PhD fellowships, helps to PhD students (France), and University of Abomey Calavi, Faculty of Agronomic Sciences (Benin), and funded mainly by the CGIAR Research Program on Roots, Tubers and Bananas (RTB) with support from CGIAR Fund Donors (


  1. Agbor-Egbe, T., & Lape Mbome, I. (2006). The effects of processing techniques in reducing cyanogen levels during the production of some Cameroonian cassava foods. Journal of Food Composition and Analysis., 19(4), 354–363.CrossRefGoogle Scholar
  2. Agriculture IIoT (1990) Le manioc en Afrique tropicale: un manual de reference. Institut international d'agriculture tropicale.Google Scholar
  3. Ajani, O. I. Y., & Ugwu, P. C. (2008). Impact of adverse health on agricultural productivity of farmers in Kainji Basin North-Central Nigeria using a stochastic production frontier approach. Trends in Agricultural Economics., 1, 1–7.CrossRefGoogle Scholar
  4. Ajibola, O. O., Makanjuola, G. A., & Almazan, A. M. (1987). Effects of processing factors on the quality of gari produced by a steam gelatinization technique. Journal of Agricultural Engineering Research., 38(4), 313–320.CrossRefGoogle Scholar
  5. Akely, P. M. T., Azouma, O. Y., & Amani, N. G. (2010). Mechanical pressing and semolina preparation from fermented cassava paste during “attiéké” (yucca flour) processing. Journal of Food Engineering., 101(4), 343–348.CrossRefGoogle Scholar
  6. Barkouti, A., Delalonde, M., Rondet, E., & Ruiz, T. (2014). Structuration of wheat powder by wet agglomeration: case of size association mechanism. Powder Technology., 252, 8–13.CrossRefGoogle Scholar
  7. Barlianto, H., & Maier, H. G. (1995). Acids in chicory roots and malt. Zeitschrift für Lebensmittel-Untersuchung und Forschung., 201(4), 375–377.CrossRefGoogle Scholar
  8. Bechoff A, Tomlins K, Fliedel G, Becerra Lopez-lavalle LA, Westby A, Hershey C & Dufour D (2016) Cassava traits and end-user preference: relating traits to consumer liking, sensory perception, and genetics. Critical Reviews in Food Science and Nutrition, 1–21.Google Scholar
  9. Blanshard, A. F. J., Dahniya, M. T., Poulter, N. H., & Taylor, A. J. (1994). Quality of cassava foods in Sierra Leone. Journal of the Science of Food and Agriculture., 64(4), 425–432.CrossRefGoogle Scholar
  10. Bradbury, J. H. (2006). Simple wetting method to reduce cyanogen content of cassava flour. Journal of Food Composition and Analysis., 19(4), 388–393.CrossRefGoogle Scholar
  11. Collard, P. & Levi, S. (1959). A two-stage fermentation of cassava. Nature, Lond. 183(4661: 620621).Google Scholar
  12. Da, G., Dufour, D., Giraldo, A., Moreno, M., Tran, T., Velez, G., Sanchez, T., Le-Thanh, M., Marouze, C., & Marechal, P.-A. (2013). Cottage level cassava starch processing systems in Colombia and Vietnam. Food and Bioprocess Technology., 6(8), 2213–2222.CrossRefGoogle Scholar
  13. Eggleston, G., & Vercellotti, J. R. (2000). Degradation of sucrose, glucose and fructose in concentrated aqueous solutions under constant pH conditions at elevated temperature. Journal of Carbohydrates Chemical., 19(9), 1305–1318.CrossRefGoogle Scholar
  14. Ejiofor MAN, Okafor, N. (1981) Comparison of pressed and unpressed cassava pulp for gari making. In: E.R. Terry KAO, and F. Caveness (ed) Tropical root crops: research strategies for the 1980s. Proceedings of the first triennial root crops symposium of the international society for tropical root crops Africa branch, 8–12 September 1980, Ibadan, Nigeria. p^pp 154–158, International Development Research Centre Monograph IDRC- 163E.Google Scholar
  15. Essers, S. A. J. A., Bosveld, M., Van Grift, R. M. D., & Voragen, A. G. J. (1993). Studies on the quantification of specific cyanogens in cassava products and introduction of a new chromogen. Journal of the Science of Food and Agriculture., 63(3), 287–296.CrossRefGoogle Scholar
  16. FAO/WHO (1995) Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission In, vol XV. p^pp 101-106. FAO, Roma, Italy.Google Scholar
  17. Ginz, M., & Engelhardt, U. H. (2001). Identification of new diketopiperazines in roasted coffee. European Food Research and Technology., 213(1), 8–11.CrossRefGoogle Scholar
  18. Giraldo Toro, A., Gibert, O., Ricci, J., Dufour, D., Mestres, C., & Bohuon, P. (2015). Digestibility prediction of cooked plantain flour as a function of water content and temperature. Carbohydrate Polymers, 118(Supplement C), 257–265.CrossRefPubMedGoogle Scholar
  19. Holloway, W. D., Argall, M. E., Jealous, W. T., Lee, J. A., & Bradbury, J. H. (1989). Organic acids and calcium oxalate in tropical root crops. Journal of Agricultural and Food Chemistry., 37(2), 337–341.CrossRefGoogle Scholar
  20. Iveson, S. M., Litster, J. D., Hapgood, K., & Ennis, B. J. (2001). Nucleation, growth and breakage phenomena in wet granulation processes: a review. Powder Technology., 117, 3–39.CrossRefGoogle Scholar
  21. James B, Okechukwu R, Abass A, Fannah S, Maziya-Dixon B, Sanni L, Osei-Sarfoh A, Fomba S & Lukombo SS (2012) Producing gari from cassava: an illustrated guide for smallholder cassava processors. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.Google Scholar
  22. Mafimisebi, T. E., & Oguntade, A. E. (2010). Preparation and use of plant medicines for farmers’ health in Southwest Nigeria: socio-cultural, magico-religious and economic aspects. Journal of Ethnobiology and Ethnomedicine., 6(1), 1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Meraz, M., Shirai, K., Larralde, P., & Revah, S. (1992). Studies on the bacterial acidification process of cassava (Manihot esculenta). Journal of the Science of Food and Agriculture., 60(4), 457–463.CrossRefGoogle Scholar
  24. Meuser, F., & Smolnik, H. D. (1980). Processing of cassava to gari and other foodstuffs. Starch - Stärke., 32(4), 116–122.CrossRefGoogle Scholar
  25. Montagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. Comprehensive Reviews in Food Science and Food Safety., 8(1), 17–27.CrossRefGoogle Scholar
  26. Moorthy, S. N., & Mathew, G. (1998). Cassava fermentation and associated changes in physicochemical and functional properties. Critical Reviews in Food Science and Nutrition., 38(2), 73–121.CrossRefPubMedGoogle Scholar
  27. Muchnik, J. & Vinck, D. (1984). La transformation du manioc: technologies autochtones. Agence de coopération culturelle et technique.Google Scholar
  28. Nago CM (1995) Artisanal gari production in Benin. Technological and physico-chemical aspects. In: Cassava processing. p^pp 475–493, Paris ORSTOM editions.Google Scholar
  29. Nambisan, B. (2011). Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food and Chemical Toxicology., 49(3), 690–693.CrossRefPubMedGoogle Scholar
  30. Obilie, E. M., Tano-Debrah, K., & Amoa-Awua, W. K. (2004). Souring and breakdown of cyanogenic glucosides during the processing of cassava into akyeke. International Journal of Food Microbiology., 93(1), 115–121.CrossRefPubMedGoogle Scholar
  31. Oboh, G., & Akindahunsi, A. A. (2003). Biochemical changes in cassava products (flour & gari) subjected to Saccharomyces cerevisae solid media fermentation. Food Chemistry., 82(4), 599–602.CrossRefGoogle Scholar
  32. O'Brien, G. M., Mbome, L., Taylor, A. J., & Poulter, N. H. (1992). Variations in cyanogen content of cassava during village processing in Cameroon. Food Chemistry., 44(2), 131–136.CrossRefGoogle Scholar
  33. Oduro, I., Ellis, W. O., Dziedzoave, N. T., & Nimako-Yeboah, K. (2000). Quality of gari from selected processing zones in Ghana. Food Control, 11(4), 297–303.CrossRefGoogle Scholar
  34. Olayinka Sanni, M. (1991). Gari processing in Ibadan metropolis: factors controlling quality at the small-scale level. In, 1994. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 256–260.Google Scholar
  35. Onabolu, A. O., Oluwole, O. S. A., Rosling, H., & Bokanga, M. (2002). Processing factors affecting the level of residual cyanohydrins in gari. Journal of the Science of Food and Agriculture., 82(9), 966–969.CrossRefGoogle Scholar
  36. Osuntokun, B. O. (1981). Cassava diet, chronic cyanide intoxification and neuropathy in Nigerian Africans. World Rev Nutr and Dietetics., 36, 141–173.CrossRefGoogle Scholar
  37. Owuamanam, C. I., Iwouno, J. O., Ihediohanm, N. C., & Barber, L. I. (2010). Cyanide reduction, functional and sensory quality of gari as affected by pH, temperature and fermentation time. Pakistan Journal of Nutrition., 9(10), 980–986.CrossRefGoogle Scholar
  38. Pingping, B., Xiaoxi, L., Fengwei, X., Ling, C., Binjia, Z., & Lin, L. (2016). Supramolecular structure and thermal behavior of cassava starch treated by oxygen and helium glow-plasmas. Innovative Food Science and Emerging Technologies., 34, 336–343.CrossRefGoogle Scholar
  39. Raheem, D., & Chukwuma, C. (2001). Foods from cassava and their relevance to Nigeria and other African countries. Agriculture and Human Values., 18(4), 383–390.CrossRefGoogle Scholar
  40. Ruiz, T., Delalonde, M., Bataille, B., Baylac, G., & Dupuy de Crescenzo, C. (2005). Texturing unsaturated granular media submitted to compaction and kneading processes. Powder Technology., 154(1), 43–53.CrossRefGoogle Scholar
  41. Samira, S., Seyed, S. S., Mortaza, A., Evangelos, T., & Abdolreza, K. (2017). Microencapsulation of walnut oil by spray drying: effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science and Emerging Technologies., 39, 101–112.CrossRefGoogle Scholar
  42. Sánchez, T., Salcedo, E., Ceballos, H., Dufour, D., Mafla, G., Morante, N., Calle, F., Pérez, J. C., Debouck, D., Jaramillo, G., & Moreno, I. X. (2009). Screening of starch quality traits in cassava (Manihot esculenta Crantz). Starch - Stärke., 61(1), 12–19.CrossRefGoogle Scholar
  43. Sánchez, T., Dufour, D., Moreno, J. L., Pizarro, M., Aragón, I. J., Domínguez, M., & Ceballos, H. (2013). Changes in extended shelf life of cassava roots during storage in ambient conditions. Postharvest Biology and Technology., 86(0), 520–528.CrossRefGoogle Scholar
  44. Taiwo, K. A., Osunbitan, A. J., Sunmmonu, T. O., Ajayi, M. O., & Ajibola, O. O. (2001). Technology choice and technical capacity in gari production. Food Reviews International., 17(1), 89–107.CrossRefGoogle Scholar
  45. Uchechukwu-Agua, A. D., Caleb, O. J., & Opara, U. L. (2015). Postharvest handling and storage of fresh cassava root and products: a review. Food and Bioprocess Technology., 8(4), 729–748.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIAT, Cassava Program, CGIAR Research Program on Roots Tubers and BananasCaliColombia
  2. 2.CIRAD UMR QualisudMontpellierFrance
  3. 3.Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ Avignon, Univ La RéunionMontpellierFrance
  4. 4.IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgroMontpellierFrance

Personalised recommendations