Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 12, pp 2208–2225 | Cite as

Mathematical Models for Prediction of Temperature Effects on Kinetic Parameters of Microorganisms’ Inactivation: Tools for Model Comparison and Adequacy in Data Fitting

  • Maria M. Gil
  • Fátima A. Miller
  • Teresa R. S. Brandão
  • Cristina L. M. Silva
Original Paper

Abstract

Microbial inactivation often follows a sigmoidal kinetic behaviour, with an initial lag phase, followed by a maximum inactivation rate period and tending to a final asymptotic value. Mathematically, such tendencies may be described by using primary kinetic models (Gompertz based model is one example) that describe microbial survival throughout processing time when stressing conditions are applied. The parameters of kinetic models are directly affected by temperature. Despite the number of mathematical equations used to describe the dependence of the kinetic parameters on temperature (so-called secondary models), there is a lack of studies regarding model comparison and adequacy in data fitting. This work provides a review of mathematical models that describe the temperature dependence of kinetic parameters related to microbial thermal inactivation. Regression analysis schemes and tests seeking model comparison are presented. A case study is included to provide guidance for the assessment of secondary model adequacy and regression analyses procedures. When modelling temperature effects on sigmoidal inactivation kinetics of microorganisms, one should be aware about the regression methodology applied. The most adequate models according to the two-step regression methodology may not be the best selection if a global fit is applied.

Keywords

Microbial inactivation Maximum inactivation rate Shoulder parameter Temperature effects 

Abbreviations

BF

Bias factor

CFU

Colony-forming unit

SHW

Standardised half width

SSE

Sum of squares of residuals

SST

Total sum of squares

Nomenclature

\( {A}_{{\mathrm{Arr}}_i} \)

Parameter i of the Arrhenius model that relates L with T (i = 1, 2)

\( {A}_{{\mathrm{Dav}}_i} \)

Parameter i of the Davey model that relates L with T (i = 1, 2, 3)

\( {A}_{{\mathrm{Ratk}}_i} \)

Parameter i of the Ratkowsky modified model that relates L with T (i = 1, 2)

\( {A}_{{\mathrm{WLF}}_i} \)

Parameter i of the Williams-Landel-Ferry model that relates L with T (i = 1, 2, 3)

\( {A}_{{\mathrm{Hip}}_i} \)

Parameter i of the hyperbole model that relates L with T (i = 1, 2, 3)

\( {C}_{{\mathrm{pel}}_i} \)

Parameter i of the Peleg model that relates k max with T (i = 1, 2, 3)

\( {C}_{{\mathrm{Ratk}}_i} \)

Parameter i of the Ratkowsky model that relates k max with T (i = 1, 2)

\( {C}_{{\mathrm{RatkM}}_i} \)

Parameter i of the Ratkowsky modified model that relates k max with T (i = 1, 2)

\( {C}_{{\mathrm{WLF}}_i} \)

Parameter i of the Williams-Landel-Ferry model that relates k max with T (i = 1, 2, 3)

df

Degrees of freedom

D

Decimal reduction time (s; min)

e

Residual

Ea

Activation energy (J mol−1)

f(xi,θ)

Mathematical function with θ parameters, evaluated at x i

F

F distribution

k

Inactivation rate (s−1; min−1)

L

Lag or shoulder parameter (s; min)

n

Number of experimental points

nr

Number of replicates

N

Microbial load (CFU mL−1)

p

Number of model parameters

R

Gas constant (8.314 J mol−1 K−1)

R2

Coefficient of determination

t

Time (s; min)

T

Temperature (K; °C)

x

Independent variable

y

Dependent response variable; logarithm of microbial loads normalised in relation to initial values

z

Temperature change required to change D value by a factor of 10 (°C)

z´

Temperature change required to change L parameter by a factor of 10 (°C)

Greek Symbols

α

Significance level (%)

ε

Experimental error

ρ

Correlation coefficient between parameters estimates

θ

Vector of model parameters

Subscripts

adj

Adjusted value

aver

Average value

i

at observation i

inact

Inactivation

max

Maximum value

min

Minimum value

pred

Predicted by the model

pure

Related to pure error

r

at replicate r

ref

Reference value

res

Residual value

0

Initial value

Notes

Acknowledgments

Fátima A. Miller and Teresa R.S. Brandão gratefully acknowledge Fundação para a Ciência e Tecnologia (FCT) and Fundo Social Europeu (FSE) for the financial support through the Post-Doctoral grants SFRH/BPD/65041/2009 and SFRH/BPD/101179/2014, respectively. This study had the support of FCT, through the strategic project UID/MAR/04292/2013 granted to MARE and through project UID/Multi/50016/2013 granted to CBQF.

References

  1. Adair, C., Kilsby, D. C., & Whittall, P. T. (1989). Comparison of the Schoolfield (non-linear Arrhenius) model and the square root model for predicting bacterial growth in foods. Food Microbiology, 6, 7–18.CrossRefGoogle Scholar
  2. Alber, S. A., & Schaffner, D. W. (1992). Evaluation of data transformations used with the square root and Schoolfield models for predicting bacterial growth rate. Applied and Environmental Microbiology, 58, 3337–3342.Google Scholar
  3. Arabshahi, A., & Lund, D. B. (1985). Considerations in calculating kinetic parameters from experimental data. Journal Food Process Engineering, 7, 239–251.CrossRefGoogle Scholar
  4. Bard, Y. (1974). Nonlinear parameter estimation. New York: Academic Press, Inc..Google Scholar
  5. Bates, D. M., & Watts, D. G. (1988). Nonlinear regression analysis and its applications. New York: John Wiley & Sons.CrossRefGoogle Scholar
  6. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experiments: an introduction to design, data analysis and model building. New York: John Wiley and Sons.Google Scholar
  7. Brandão, T.R.S. (2004). Application of non-isothermal methods to the estimation of mass transfer parameters: analysis of the effect of experimental design and data analysis on the precision and accuracy of the estimates. Ph.D. dissertation, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal.Google Scholar
  8. Char, C., Guerrero, S., & Alzamora, S. M. (2009). Survival of Listeria innocua in thermally processed orange juice as affected by vanillin addiction. Food Control, 20, 67–74.CrossRefGoogle Scholar
  9. Cohen, E., & Saguy, I. (1985). Statistical evaluation of Arrhenius model and its applicability in prediction of food quality losses. Journal of Food Processing and Preservation, 9, 273–290.CrossRefGoogle Scholar
  10. Cohen, E., Birk, Y., Mannheim, C. H., & Saguy, I. S. (1994). Kinetic parameter estimation for quality change during continuous thermal processing of grapefruit juice. Journal of Food Science, 59, 155–158.CrossRefGoogle Scholar
  11. Corradini, M. G., & Peleg, M. (2003). A model of microbial survival curves in water treated with a volatile disinfectant. Journal of Applied Microbiology, 95, 1268–1276.CrossRefGoogle Scholar
  12. Davey, K. R. (1991). Applicability of the Davey (linear Arrhenius) predictive model to the lag phase of microbial growth. Journal of Applied Bacteriology, 70, 253–257.CrossRefGoogle Scholar
  13. Duh, Y. H., & Schaffner, D. W. (1993). Modeling the effect of temperature on the growth rate and lag time of Listeria innocua and Listeria monocytogenes. Journal of Food Protection, 56, 205–210 Quoted in Oscar TP (2002).CrossRefGoogle Scholar
  14. Gibson, A. M., Bratchell, N., & Roberts, T. A. (1988). Predicting microbial growth—growth responses of Salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. International Journal of Food Microbiology, 6, 155–178.CrossRefGoogle Scholar
  15. Gil, M. M., Brandão, T. R. S., & Silva, C. L. M. (2006). A modified Gompertz model to predict microbial inactivation under time-varying temperature conditions. Journal of Food Engineering, 76, 89–94.CrossRefGoogle Scholar
  16. Gil, M. M., Miller, F. A., Brandão, T. R. S., & Silva, C. L. M. (2011). On the use of the Gompertz model to predict microbial thermal inactivation under isothermal and non-isothermal conditions. Food Engineering Reviews, 3, 17–25.CrossRefGoogle Scholar
  17. Gill, C.O., Phillips, D.M., & Loeffen, P.F. (1988). A computer program for assessing the remaining storage life of chilled red meats from product temperature histories. In: Refrigeration for food and people: Proceeding. Meeting. Community. C2, D1, D2/3, E1 - International Institute of Refrigeration, Paris (p. 73–77). Quoted in Zwietering et al. (1991).Google Scholar
  18. Guimarães, R. C., & Cabral, J. A. S. (1997). Estatística. Lisboa: McGraw-Hill.Google Scholar
  19. Haralampu, S. G., Saguy, I., & Karel, M. (1985). Estimation of Arrhenius model parameters using three least squares methods. Journal of Food Processing and Preservation, 9, 129–143.CrossRefGoogle Scholar
  20. Huang, L. (2009). Thermal inactivation of Listeria monocytogenes in ground beef under isothermal and dynamic temperature conditions. Journal of Food Engineering, 90, 380–387.CrossRefGoogle Scholar
  21. Huang, L. H. (2010). Growth kinetics of Escherichia coli O157:H7 in mechanically-tenderized beef. International Journal of Food Microbiology, 140, 40–48.CrossRefGoogle Scholar
  22. Jay, J. M. (1996). Modern food microbiology. New York: Chapman Hall.CrossRefGoogle Scholar
  23. Johnson, M. L., & Frasier, S. G. (1985). Nonlinear least-squares analysis. Methods in Enzymology, 117, 301–342.CrossRefGoogle Scholar
  24. Juneja, V. K., Eblen, B. S., & Marks, H. M. (2001). Modelling non-linear survival curves to calculate thermal inactivation of Salmonella in poultry of different fat levels. International Journal of Food Microbiology, 70, 37–51.CrossRefGoogle Scholar
  25. Koseki, S., Takizawa, Y., Miya, S., Takahashi, H., & Kimura, B. (2011). Modeling and predicting the simultaneous growth of Listeria monocytogenes and natural flora in minced tuna. Journal of Food Protection, 74, 176–187.CrossRefGoogle Scholar
  26. Laidler, K. J. (1969). Theories of chemical reaction rates. New York: McGraw-Hill.Google Scholar
  27. Leguérinel, I., Spegagne, I., Couvert, O., Corroler, L., & Mafart, P. (2007). Quantifying effects of heating temperature and combined effects of heating medium pH and recovery medium pH on the heat resistance of Salmonella typhimurium. International Journal of Food Microbiology, 116, 88–95.CrossRefGoogle Scholar
  28. Lund, D. B. (1983). Considerations in modeling food processes. Food Technology, 37, 92–94.Google Scholar
  29. Mafart, P. (2000). Taking injuries of surviving bacteria into account for optimising heat treatments. International Journal of Food Microbiology, 55, 175–179.CrossRefGoogle Scholar
  30. Mataragas, M., Stergiou, V., & Nychas, G. J. E. (2008). Modeling survival of Listeria monocytogenes in the traditional Greek soft cheese Katiki. Journal of Food Protection, 71, 1835–1845.CrossRefGoogle Scholar
  31. McDonald, K., & Sun, D. W. (1999). Predictive food microbiology for the meat industry: a review. International Journal of Food Microbiology, 52, 1–27.CrossRefGoogle Scholar
  32. McMeekin, T. A., Olley, J., Ross, T., & Ratkowsky, D. A. (1993). Predictive microbiology. Theory and application. New York: John Wiley and Sons.Google Scholar
  33. Membré, J. M., Thurette, J., & Catteau, M. (1997). Modelling the growth, survival and death of Listeria monocytogenes. Journal of Applied Microbiology, 82, 345–350.CrossRefGoogle Scholar
  34. Miller, F. A., Gil, M. M., Brandão, T. R. S., Teixeira, P., & Silva, C. L. M. (2009a). Sigmoidal thermal inactivation kinetics of Listeria innocua in broth: influence of strain and growth phase. Food Control, 20, 1151–1157.CrossRefGoogle Scholar
  35. Miller, F. A., Ramos, B. F., Gil, M. M., Brandão, T. R. S., Teixeira, P., & Silva, C. L. M. (2009b). Influence of pH, type of acid and recovery media on the thermal inactivation of Listeria innocua. International Journal of Food Microbiology, 133, 121–128.CrossRefGoogle Scholar
  36. Miller, F. A., Ramos, B. F., Brandão, T. R. S., Teixeira, P., & Silva, C. L. M. (2010). Comparison of recovery methods for the enumeration of injured Listeria innocua cells under isothermal and non-isothermal treatments. Food Microbiology, 27, 1112–1120.CrossRefGoogle Scholar
  37. Miller, F. A., Ramos, B. F., Gil, M. M., Brandão, T. R. S., Teixeira, P., & Silva, C. L. M. (2011). Heat inactivation of Listeria innocua in broth and food products under non-isothermal conditions. Food Control, 22, 20–26.CrossRefGoogle Scholar
  38. Mohr, P. W., & Krawiec, S. (1980). Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles. Journal of General Microbiology, 121, 311–317.Google Scholar
  39. Motulsky, H. J., & Ransnas, L. A. (1987). Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB Journal, 1, 365–374.Google Scholar
  40. Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models (4th ed.). Chicago: McGraw-Hill Companies.Google Scholar
  41. Oscar, T. P. (2002). Development and validation of tertiary simulation model for predicting the potential growth of Salmonella typhimurium on cooked chicken. International Journal of Food Microbiology, 76, 177–190.CrossRefGoogle Scholar
  42. Peleg, M., & Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science and Nutrition, 38, 353–380.CrossRefGoogle Scholar
  43. Peleg, M., Engel, R., Gonzalez-Martinez, C., & Corradini, M. G. (2002). Non-Arrhenius and non-WLF kinetics in food systems. Journal of the Science of Food and Agriculture, 82, 1346–1355.CrossRefGoogle Scholar
  44. Perni, S., Deng, X. T., Shama, G., & Kong, G. (2006). Modelling the inactivation kinetics of Bacillus subtilis spores by nonthermal plasmas. IEEE Transactions on Plasma Sciences, 34, 1297–1303.CrossRefGoogle Scholar
  45. Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology, 149, 1–5.Google Scholar
  46. Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R. E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 154, 1222–1226.Google Scholar
  47. Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81, 501–508.CrossRefGoogle Scholar
  48. Ross, T., & Dalgaard, P. (2004). Secondary models. In R. C. McKellar & X. Lu (Eds.), Modelling microbial responses in food. New York: CRC Press.Google Scholar
  49. Ross, T., & McMeekin, T. A. (1994). Predictive microbiology: a review. International Journal of Food Microbiology, 23, 241–264.CrossRefGoogle Scholar
  50. Rudra, S. G., Chhibberc, S., & Shivhare, U. S. (2010). Thermal death kinetics of B. stearothermophilus in coriander leaf puree. Biosystems Engineering, 106, 544–550.CrossRefGoogle Scholar
  51. Schaffner, D. W. (1995). The application of the WLF equation to predict lag time as a function of temperature for three psychotropic bacteria. Food Microbiology, 27, 107–115.CrossRefGoogle Scholar
  52. Schoolfield, R. M., Sharpe, P. J. H., & Magnuson, C. E. (1981). Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology, 88, 719–731 Quoted in Ross, T. (2004).CrossRefGoogle Scholar
  53. Seber, G. A. F., & Wild, C. J. (1989). Nonlinear regression. New York: John Wiley and Sons.CrossRefGoogle Scholar
  54. Skandamis, P. N., Davies, K. W., McClure, P. J., Koutsoumanis, K., & Tassou, C. (2002). A vitalistic approach for non-thermal inactivation of pathogens in traditional Greek salads. Food Microbiology, 19, 405–421.CrossRefGoogle Scholar
  55. Valdramidis, V. P., Belaubre, N., Zuniga, R., Foster, A. M., Havet, M., Geeraerd, A. H., Swain, M. J., Bernaerts, K., Van Impe, J. F., & Kondjoyan, A. (2005a). Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination. International Journal of Food Microbiology, 100, 261–274.CrossRefGoogle Scholar
  56. Valdramidis, V. P., Bernaerts, K., Van Impe, J. F., & Geeraerd, A. H. (2005b). An alternative approach to non-linear thermal microbial inactivation: modelling the number of log cycles reduction with respect to temperature. Food Technology and Biotechnology, 43, 321–327.Google Scholar
  57. Van Asselt, E. D., & Zwietering, M. H. (2006). A systematic approach to determine global thermal inactivation parameters for various food pathogens. International Journal of Food Microbiology, 107, 73–82.CrossRefGoogle Scholar
  58. Van Boekel, M. A. J. S. (1996). Statistical aspects of kinetic modelling for food science problems. Journal of Food Science, 61, 477–486.CrossRefGoogle Scholar
  59. Velugoti, P. R., Bohra, L. K., Juneja, V. K., Huang, L., Wesseling, A. L., Subbiah, J., & Thippareddi, H. (2011). Dynamic model for predicting growth of Salmonella spp. in ground sterile pork. Food Microbiology, 28, 796–803.CrossRefGoogle Scholar
  60. Walpole, R. E., & Myers, R. H. (1993). Probability and statistics for engineers and scientists (5th ed.). New York: Macmillan Publishing Company.Google Scholar
  61. Whiting, R. C., & Buchanan, R. L. (1994). Microbial modeling. A scientific status summary by the Institute of Food Technologists. Food Technology, 48, 113–120.Google Scholar
  62. William, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3707.CrossRefGoogle Scholar
  63. Xiong, R., Xie, G., Edmondson, A. S., Linton, R. H., & Sheard, M. A. (1999). Comparison of the Baranyi model with the Gompertz equation for modelling thermal inactivation of Listeria monocytogenes Scott A. Food Microbiology, 16, 269–279.CrossRefGoogle Scholar
  64. Zaika, L. L., & Phillips, J. G. (2005). Model for the combined effects of temperature, pH and sodium chloride concentration on survival of Shigella flexneri strain 5348 under aerobic conditions. International Journal of Food Microbiology, 2, 179–187.CrossRefGoogle Scholar
  65. Zanoni, B., Peri, C., Garzaroli, C., & Pierucci, S. (1997). A dynamic mathematical model of the thermal inactivation of Enterococcus faecium during bologna sausage cooking. Lebensmittel Wissenschaft & Technologie, 30, 727–734.CrossRefGoogle Scholar
  66. Zhang, D. L., McQuestin, J. O., Mellefont, L. A., & Ross, T. (2010). The influence of non-lethal temperature on the rate of inactivation of vegetative bacteria in inimical environments may be independent of bacterial species. Food Microbiology, 27, 453–459.CrossRefGoogle Scholar
  67. Zwietering, M. H., Koos, J. T., Hasenack, B. E., Wit, J. C., & Van’t Riet, K. (1991). Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology, 57, 1094–1101.Google Scholar
  68. Zwietering, M. H., Wit, J. C., Cuppers, H. G. A. M., & Van’t Riet, K. (1994). Modeling of bacterial growth with shifts in temperature. Applied and Environmental Microbiology, 60, 204–213.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Maria M. Gil
    • 1
  • Fátima A. Miller
    • 2
  • Teresa R. S. Brandão
    • 2
  • Cristina L. M. Silva
    • 2
  1. 1.MARE—Marine and Environmental Sciences Centre, ESTMPenichePortugal
  2. 2.CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de BiotecnologiaCentro Regional do Porto da Universidade Católica PortuguesaPortoPortugal

Personalised recommendations