Food and Bioprocess Technology

, Volume 10, Issue 11, pp 2060–2068 | Cite as

The Effect of Natural Ingredients (Amaranth and Pumpkin Seeds) on the Quality Properties of Chicken Burgers

  • Erica Longato
  • Raquel Lucas-González
  • Pier Giorgio Peiretti
  • Giorgia Meineri
  • Jose Angel Pérez-Alvarez
  • Manuel Viuda-Martos
  • Juana Fernández-López
Original Paper


The objective of the current study was to include natural ingredients in the formulation of chicken burgers to improve their quality properties (physicochemical, cooking, oxidation and sensorial properties) during 4 days of refrigerated storage at 4 °C. Chicken burgers were processed added with amaranth (1 and 2%) or pumpkin seeds (1 and 2%) in addition to control. Lipid oxidation was assessed by monitoring malonaldehyde formation with 2-thiobarbituric acid reactive substances (TBARS) assay and antioxidant capacity by ABTS, DPPH and FRAPS methods. Natural ingredients (amaranth and pumpkin seeds) used in manufacturing of chicken burgers may improve their cooking characteristics, as well as lipid stability during storage (this effect was stronger when amaranth was added). Moreover, the impact of these ingredients on sensory quality attributes of chicken burgers was not significant; even in some cases (burgers with 2% amaranth), the overall acceptability was scored as higher than control burgers.


Amaranth Pumpkin seeds Burgers Antioxidant Chicken meat 


  1. Abdel-Naeem, H. H. S., & Mohamed, H. M. (2016). Improving the physico-chemical and sensory characteristics of camel meat burger patties using ginger extract and papain. Meat Science, 118, 52–60.CrossRefGoogle Scholar
  2. Alegbejo, J. O. (2013). Nutritional value and utilization of amaranthus (Amaranthus spp.): a review. Bayero Journal of Pure and Applied Sciences, 6, 136–143.CrossRefGoogle Scholar
  3. Aleson-Carbonell, L., Fernández-López, J., Pérez-Alvarez, J. A., & Kuri, V. (2005). Characteristics of beef burger as influenced by various types of lemon albedo. Innovative Food Science & Emerging Technologies, 6, 247–255.CrossRefGoogle Scholar
  4. Al-Khalifa, A. S. (1996). Physicochemical characteristics, fatty acid composition and lipoxygenase activity of crude pumpkin and melon seed oils. Journal of Agricultural & Food Chemistry, 44, 964–966.CrossRefGoogle Scholar
  5. Amensour, M., Sendra, E., Pérez-Alvarez, J. A., Abrini, J., & Fernández-López, J. (2015). Effect of myrtle (Myrtus communis) extracts on storage stability of chicken frankfurters. International Journal of Biotechnology for Wellness Industries, 4, 1–11.CrossRefGoogle Scholar
  6. AOAC (2007). Official methods of analysis (18th ed.). Washington, DC: Association of Official Analytical Chemists.Google Scholar
  7. ASTM (1986). In J. Eggert and K. Zook (Eds.), STP 913; Physical requirement guidelines for sensory evaluation laboratories. ASTM Manual Series. Philadephia: American Society for Testing and Materials.Google Scholar
  8. ASTM (1988). In R. C. Storer (Ed.), Standards on sensory evaluation of materials and products, ASTM Manual Series. Philadelphia: American Society for Testing and Materials.Google Scholar
  9. Besbes, S., Attia, H., Deroanne, C., Makni, S., & Blecker, C. (2008). Partial replacement of meat by pea fiber: effect on the chemical composition, cooking characteristics and sensory properties of beef burgers. Journal of Food Quality, 31, 480–489.CrossRefGoogle Scholar
  10. Bochi, V., Weber, J., Ribeiro, C., Victório, A., & Emanuelli, T. (2008). Fishburgers with silver catfish (Rhamdia quelen) filleting residue. Bioresource Technology, 99, 8844–8849.CrossRefGoogle Scholar
  11. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie, 28, 25–30.CrossRefGoogle Scholar
  12. Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 306–307.Google Scholar
  13. Číž, M., Čížová, H., Denev, P., Kratchanova, M., Slavov, A., & Lojek, A. (2010). Different methods for control and comparison of the antioxidant properties of vegetables. Food Control, 21, 518–523.CrossRefGoogle Scholar
  14. Fu, C. L., Shi, H., & Li, Q. H. (2006). A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods for Human Nutrition, 61, 70–77.CrossRefGoogle Scholar
  15. Fu, C. L., Tian, H. J., Cai, T. Y., Liu, Y., & Li, Q. H. (2007). Some properties of an acidic protein-bound polysaccharide from the fruit of pumpkin. Food Chemistry, 100, 944–947.CrossRefGoogle Scholar
  16. IFT (1981). Sensory evaluation guide for testing food and beverage products, and guidelines for the preparation and review of papers reporting sensory evaluation data. Food Technology, 35, 50.Google Scholar
  17. Leite, A., Malta, L. G., Riccio, M. F., Eberlin, M. N., Pastore, G. M., & Marostica Junior, M. R. (2011). Antioxidant potential of rat plasma by administration of freeze-dried jaboticaba peel (Myrciaria jaboticaba Vell Berg). Journal of Agricultural and Food Chemistry, 59, 2277–2283.CrossRefGoogle Scholar
  18. Li, Q. H., Tian, Z., & Cai, T. Y. (2001). Study on the hypoglycemic action of pumpkin extract in diabetic rat. Acta Nutrimenta Sinica, 25, 34–36.Google Scholar
  19. Longato, E., Peiretti, P., Gai, F., Meineri, G., & Amarowicz, R. (2016). Comparison of antioxidant activity and phenolic compounds of amaranth (Amaranthus caudatus) grain and pumpkin (Curcubita pepo) seed extracts. Journal of International Society of Antioxidants in Nutrition & Health, 3, 74.Google Scholar
  20. Lunn, J., & Buttriss, J. L. (2007). Carbohydrates and dietary fibre. Nutrition Bulletin, 32, 21–64.CrossRefGoogle Scholar
  21. Makni, M., Sefi, M., Fetoui, H., Garoui, E. M., Gargouri, N. K., Boudawara, T., & Zeghal, N. (2010). Flax and pumpkin seeds mixture ameliorates diabetic nephropathy in rats. Food Chemistry & Toxicology, 48, 2407–2412.CrossRefGoogle Scholar
  22. Mielnick, M. B., Olsen, E., Vogt, G., Adeline, D., & Skrede, G. (2006). Grape seed extract as antioxidant in cooked, cold stored turkey meat. LWT-Food Science and Technology, 39, 191–198.CrossRefGoogle Scholar
  23. Mohamed, F. K., Sobhy, H. M., Azer, W. Z., Manal, M. E., Ali, H. M. Z., & El-askalany, S. A. (2014). Fatty acid profile, antioxidant activity of various suggested chicken burger treatments. Annals of Agricultural Sciences, 59, 47–51.CrossRefGoogle Scholar
  24. National Research Council (NRC). (2006). “Amaranth”. Lost crops of Africa: volume II—vegetables. Washington, DC: National Academy Press ISBN 978-0-309-10333. OCLC 34344933 79635740. Retrieved 15th July, 2008.Google Scholar
  25. Oyaizu, M. (1986). Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Japan Journal of Nutrition, 44, 307–315.CrossRefGoogle Scholar
  26. Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz-Rubio, E., Serrano, J., Goñi, I., et al. (2008). Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expression of results. Food Research International, 41, 274–285.CrossRefGoogle Scholar
  27. Rezig, L., Chibani, F., Chouaibi, M., Dalgalarrondo, M., Hessini, K., Gueguen, J., et al. (2013). Pumpkin (Cucurbita maxima) seed proteins: sequential extraction processing and fraction characterization. Journal of Agricultural and Food Chemistry, 61, 7715–7721.CrossRefGoogle Scholar
  28. Saavedra, M. J., Aires, A., Dias, C. J., Almeida, A., De Vasconcelos, M. C. B. M., Santos, P., & Rosa, E. A. (2015). Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds. Journal of Food Science & Technology, 52, 1008–1015.CrossRefGoogle Scholar
  29. Sánchez-Zapata, E., Muñoz, C. M., Fuentes, E., Fernández-López, J., Sendra, E., Sayas, E., Navarro, C., & Pérez-Alvarez, J. A. (2010). Effect of tiger nut fibre on quality characteristics of pork burger. Meat Science, 85, 70–76.CrossRefGoogle Scholar
  30. Sáyago-Ayerdi, S. G., Brenes, A., & Goñi, I. (2009). Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT-Food Science and Technology, 42, 971–976.CrossRefGoogle Scholar
  31. Selani, M. M., Contreras-Castillo, C. J., Shirahigue, L. D., Gallo, C. R., Plata-Oviedo, M., & Montes-Villanueva, N. D. (2011). Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Science, 88, 397–403.CrossRefGoogle Scholar
  32. Tadmor, Y., Paris, H. S., Meir, A., Schaffer, A. A., & Lewinsohn, E. (2005). Dual role of the pigmentation gene B in affecting carotenoid and vitamin E content in squash (Cucurbita pepo) mesocarp. Journal of Agricultural and Food Chemistry, 53, 9759–9763.CrossRefGoogle Scholar
  33. Tang, S. Z., Kerry, J. P., Sheeham, D., Buckley, D. J., & Morrissey, P. A. (2001). Antioxidative effect of dietary tea catechins on lipid oxidation of long-term frozen stored chicken meat. Meat Science., 57, 331–336.CrossRefGoogle Scholar
  34. Troy, D. J., Desmond, E. M., & Buckey, D. J. (1999). Eating quality of low-fat beef burgers containing fat-replacing functional blends. Journal of the Science of Food & Agriculture, 79, 507–516.CrossRefGoogle Scholar
  35. Turhan, S., Sagir, I., & Ustun, N. S. (2005). Utilization of hazelnut pellicle in low-fat beef burgers. Meat Science, 71, 312–316.CrossRefGoogle Scholar
  36. Venskutonis, P. R., & Kraujalis, P. (2013). Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety, 12, 381–412.CrossRefGoogle Scholar
  37. Verma, S. P., & Sahoo, J. (2000). Extension of shelf-life of ground chevon during refrigerated storage by using ascorbic acid. Journal of Food Science & Technology, 37, 565–570.Google Scholar
  38. Zhang, Y., & Yao, H. (2002). Study on effect of hypoglycemia of different type pumpkin. Journal of Chinese Food Science, 23, 118–120.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Veterinary ScienceUniversity of TorinoTorinoItaly
  2. 2.IPOA Research Group (UMH-1 and REVIV-Generalitat Valenciana), AgroFood Technology Department, Escuela Politécnica Superior de OrihuelaMiguel Hernández UniversityOrihuelaSpain
  3. 3.National Research CouncilInstitute of Sciences of Food ProductionBariItaly

Personalised recommendations