Food and Bioprocess Technology

, Volume 10, Issue 10, pp 1854–1864 | Cite as

Sonication Effect on Bioactive Compounds of Cashew Apple Bagasse

  • Thatyane Vidal Fonteles
  • Ana Karoline Ferreira Leite
  • Ana Raquel Araújo da Silva
  • Fabiano André Narciso Fernandes
  • Sueli Rodrigues
Original Paper


This study describes some effects of high-power ultrasound on cashew apple bagasse. The main objective was to develop an optimized process for sonication of cashew apple bagasse, evaluating the effect of ultrasound on antioxidant compounds. To define the best conditions for sonication, a 23 factorial central composite design was used changing the independent variables: bagasse/water ratio, ultrasonic power intensity (W/cm2), and processing time (min). Antioxidant compounds such as vitamin C, β-carotene, and total phenolic compounds were determined. The total antioxidant capacity (ABTS(2,2 AZINO BIS (3-ethylbenzo thiazoline 6 sulfonic acid) diammoninum salt and DPPH (2,2-Diphenyl-1-picryl-hidrazil)) was also evaluated. A thermal treatment was carried at the highest temperature reached after sonication (51 °C) to evaluate the heat effect due to a temperature increase during processing. Sonication changed the bagasse aspect from a fibrous residue to a pleasant yellow puree. The maximal concentration of vitamin C, phenolics, and β-carotene was obtained when the processing conditions were as follows: bagasse/water ratio of 1:4 (w/w), ultrasound power intensity of 226 W/cm2, and 6 min of processing. The high total phenolic content (2186 mg of gallic acid/100 g DW), vitamin C (148 mg/100 g DW), and β-carotene (12 mg/100 g) obtained proved the sonication efficiency. The antioxidant activity determined by the DPPH and ABTS assays confirmed the suitability of ultrasound for the preparation of antioxidant-rich cashew apple bagasse puree.


High-intensity ultrasound Extraction Antioxidants Cashew apple bagasse Bioactive compounds 



Authors thank CNPq for the financial support through the National Institute of Science and Technology of Tropical Fruit, FUNCAP, and CAPES for the fellowship.


  1. Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S., & Zeng, X. (2014). Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrasonics Sonochemistry, 21(1), 93–97.CrossRefGoogle Scholar
  2. Al-Dhabi, N. A., Ponmurugan, K., & Maran Jeganathan, P. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34, 206–213.CrossRefGoogle Scholar
  3. Allegra, J. R., & Hawley, S. A. (1972). Attenuation of sound in suspensions and emulsions: theory and experiments. The Journal of Accoustic Society of America, 51, 1545–1564.CrossRefGoogle Scholar
  4. Annegowda, H. V., Bhat, R., Min-Tze, L., Karim, A. A., & Mansor, S. M. (2011). Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. Journal of Food Science and Technology, 49(4), 510–514.CrossRefGoogle Scholar
  5. Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., et al. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Science & Emerging Technologies, 9(2), 155–160.CrossRefGoogle Scholar
  6. Assunção, R. B., & Mercadante, A. Z. (2003). Carotenoids and ascorbic acid from cashew apple (Anacardium occidentale L.): variety and geographic effects. Food Chemistry, 81, 495–502.CrossRefGoogle Scholar
  7. Aybastıer, Ö., Işık, E., Şahin, S., & Demir, C. (2013). Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Industrial Crops and Products, 44, 558–565.CrossRefGoogle Scholar
  8. Babbar, N., Oberoi, H. S., Uppal, D. S., & Patil, R. T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International, 44(1), 391–396.CrossRefGoogle Scholar
  9. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.CrossRefGoogle Scholar
  10. Broinizi, P. R. B., Andrade-Wartha, E. R. S., Silva, A. M. O., Novoa, A. J. V., Torres, R. P., Azeredo, H. M. C., et al. (2007). Evaluation of the antioxidant activity of phenolic compounds naturally contained in by-products of the cashew apple (Anacardium occidentale L.) Ciência e Tecnologia de Alimentos, 27(4), 902–908.CrossRefGoogle Scholar
  11. Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Grimi, N., Vorobiev, E., Esteve, M. J., et al. (2016). Changes of antioxidant compounds in a fruit juice-stevia rebaudiana blend processed by pulsed electric technologies and ultrasound. Food and Bioprocess Technology, 9(7), 1159–1168.CrossRefGoogle Scholar
  12. Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835.CrossRefGoogle Scholar
  13. Comarella, C. G., Sautter, C. K., Ebert, L. C., & Penna, N. G. (2012). Phenolic compounds and sensory evaluation of juice from Isabel grapes treated with ultrasound. Brazilian Journal of Food Technology, 4, 69–73.CrossRefGoogle Scholar
  14. Davies, J. N., & Hobson, G. E. (1981). The constituents of tomato fruit—the influence of environment, nutrition, and genotype. Critical Reviews in Food Science and Nutrition, 15(3), 205–280.CrossRefGoogle Scholar
  15. Denbow, N. (2001). Ultrasonic instrumentation in the food industry. In E. Kress-Rogers & C. J. B. Brimelow (Eds.), Ultrasonic instrumentation in the food industry, 2nd edn (pp. 346). Woodhead Publishing, 872p.Google Scholar
  16. Dietz, J. M., Sri Kantha, S., & Erdman, J. W. (1988). Reversed phase HPLC analysis of alpha- and beta-carotene from selected raw and cooked vegetables. Plant Foods for Human Nutrition, 38(4), 333–341.CrossRefGoogle Scholar
  17. Fernandes, F. A. N., & Rodrigues, S. (2012). Ultrasound applications in fruit processing. In F. A. N. Fernandes & S. Rodrigues (Eds.), Advances in fruit processing technologies (1 st ed., p. 454). Boca Raton: CRC Press.Google Scholar
  18. Fernandez Garcia, A., Butz, P., & Tausch, B. (2001). Effects of high-pressure processing on carotenoid extractability, antioxidant activity, glucose diffusion, and water binding of tomato puree (Lycopersicon esculentum Mill.) Journal of Food Science, 66(7), 1033–1038.CrossRefGoogle Scholar
  19. Fonteles, T. V., Costa, M. G. M., de Jesus, A. L. T., de Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2012). Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters. Food Research International, 48(1), 41–48.CrossRefGoogle Scholar
  20. Gani, A., Baba, W. N., Ahmad, M., Shah, U., Khan, A. A., Wani, I. A., et al. (2016). Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT—Food Science and Technology, 66, 496–502.Google Scholar
  21. Guilherme, A. A., Honorato, T. L., Dornelles, A. S., Pinto, G. A. S., Brito, E. S., & Rodrigues, S. (2009). Quality evaluation of mesquite (Prosopis juliflora ) pods and cashew (Anacardium occidentale) apple syrups. Journal of Food Process Engineering, 32(4), 606–622.CrossRefGoogle Scholar
  22. Keenan, D. F., Tiwari, B. K., Patras, A., Gormley, R., Butler, F., & Brunton, N. P. (2012). Effect of sonication on the bioactive, quality and rheological characteristics of fruit smoothies. International Journal of Food Science and Technology, 47(4), 827–836.CrossRefGoogle Scholar
  23. Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A.-S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2), 851–858.CrossRefGoogle Scholar
  24. Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45, 1390–1393.CrossRefGoogle Scholar
  25. Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731–738.CrossRefGoogle Scholar
  26. Mulet, A., Cárcel, J. A., Sanjuán, N., & Bon, J. (2003). New food drying technologies—use of ultrasound. Food Science and Technology International, 9(3), 215–221.CrossRefGoogle Scholar
  27. Obanda, M., & Owuor, P. O. (1997). Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. Journal of the Science of Food and Agriculture, 50(1968).Google Scholar
  28. Oliveira, V. H. (2014). Cajucultura. Revista Brasileira de Fruticultura, 30(1), 001–284.Google Scholar
  29. Queiroz, C., da Silva, A. J. R., Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2011). Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (Anacardium occidentale L.) after processing. Food Chemistry, 125(1), 128–132.CrossRefGoogle Scholar
  30. Rabelo, M. C., Fontes, C. P. M. L., & Rodrigues, S. (2009). Enzyme synthesis of oligosaccharides using cashew apple juice as substrate. Bioresource Technology, 100(23), 5574–5580.CrossRefGoogle Scholar
  31. Rufino, M. D. S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002.CrossRefGoogle Scholar
  32. Safari, M., Ghanati, F., Behmanesh, M., Hajnorouzi, A., Nahidian, B., & Mina, G. (2013). Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiologiae Plantarum, 35(9), 2847–2855.CrossRefGoogle Scholar
  33. Santos, R. P., Santiago, A. A. X., Gadelha, C. A. A., Cajazeiras, J. B., Cavada, B. S., Martins, J. L., et al. (2007). Production and characterization of the cashew (Anacardium occidentale L.) peduncle bagasse ashes. Journal of Food Engineering, 79(4), 1432–1437.CrossRefGoogle Scholar
  34. Santos, J. G., Fernandes, F. A. N., de Siqueira Oliveira, L., & de Miranda, M. R. A. (2015). Influence of ultrasound on fresh-cut mango quality through evaluation of enzymatic and oxidative metabolism. Food and Bioprocess Technology, 8(7), 1532–1542.CrossRefGoogle Scholar
  35. Tabaraki, R., Heidarizadi, E., & Benvidi, A. (2012). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Separation and Purification Technology, 98, 16–23.CrossRefGoogle Scholar
  36. Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2009). Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innovative Food Science & Emerging Technologies, 10(2), 166–171.CrossRefGoogle Scholar
  37. Wang, J., Sun, B., Cao, Y., Tian, Y., & Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106(2), 804–810.CrossRefGoogle Scholar
  38. Ye, J., Feng, L., Xiong, J., & Xiong, Y. (2011). Ultrasound-assisted extraction of corn carotenoids in ethanol. International Journal of Food Science and Technology, 46(10), 2131–2136.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Thatyane Vidal Fonteles
    • 1
  • Ana Karoline Ferreira Leite
    • 1
  • Ana Raquel Araújo da Silva
    • 1
  • Fabiano André Narciso Fernandes
    • 2
  • Sueli Rodrigues
    • 1
  1. 1.Departamento de Engenharia de AlimentosUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Engenharia QuímicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations