Food and Bioprocess Technology

, Volume 10, Issue 10, pp 1824–1833 | Cite as

Listeria Inactivation by the Combination of High Hydrostatic Pressure and Lactocin AL705 on Cured-Cooked Pork Loin Slices

  • Andrea Micaela DallagnolEmail author
  • Yanina Barrio
  • Mariana Cap
  • Natalia Szerman
  • Patricia Castellano
  • Sergio Ramón Vaudagna
  • Graciela Vignolo
Original Paper


The effect of the bacteriocin lactocin AL705 in combination with high hydrostatic pressure (HHP) on the inactivation of Listeria innocua 7, a nonpathogenic indicator for Listeria monocytogenes, deliberately inoculated (ca. 6.4 log CFU/g) onto the surface of ready-to-eat (RTE) sliced cured-cooked pork loin, was evaluated. Nontreated pork slices (control) and treatments subjected to lactocin AL705 (105 AU/ml) and/or HHP (400 or 600 MPa) were prepared. L. innocua 7 was monitored at days 1, 20, and 40 of storage at 4 °C. The results showed a complete inhibition of L. innocua 7 after the combined treatment with lactocin AL705 and 600 MPa and no regrowing of cells up to 40-day storage. The treatment at 600 MPa alone was not enough to avoid regrowth of L. innocua. Ultrastructural cell damage was observed at the cytoplasm and cell membrane/wall levels with all treatments; however, complete cell lysis was observed only with the combined treatment. HHP in combination with lactocin AL705 provided a wider margin of safety as post-processing listericidal treatment of RTE cured-cooked meat products.


High hydrostatic pressure Lactocin AL705 Listeria Cured-cooked pork loin Cell ultrastructural changes 



The authors wish to thank Claudio Sanow from the Instituto de Tecnología de Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA) for his kind assistance during the use of the high hydrostatic pressure system. This study was supported by INTA (grant PNAIyAV 1130033 “Tecnologías de Preservación de Alimentos y Aprovechamiento de Subproductos”), PICT2010 No. 0655 and PICT2015 No. 1746 from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina.


  1. Ananou, S., Garriga, M., Hugas, M., Maqueda, M., Martínez-Bueno, M., Gálvez, A., & Valdivia, E. (2005). Control of Listeria monocytogenes in model sausages by enterocin AS-48. International Journal of Food Microbiology, 103(2), 179–190.CrossRefGoogle Scholar
  2. Ananou, S., Garriga, M., Jofré, A., Aymerich, T., Gálvez, A., Maqueda, M., et al. (2010). Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. Meat Science, 84(4), 594–600.CrossRefGoogle Scholar
  3. Aymerich, T., Jofré, A., Garriga, M., & Hugas, M. (2005). Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. Journal of Food Protection, 68(1), 173–177.CrossRefGoogle Scholar
  4. Black, E. P., Kelly, A. L., & Fitzgerald, G. F. (2005). The combined effect of high pressure and nisin on inactivation of microorganisms in milk. Innovative Food Science & Emerging Technologies, 6(3), 286–292.CrossRefGoogle Scholar
  5. Blanco Massani, M., Molina, V., Sanchez, M., Renaud, V., Eisenberg, P., & Vignolo, G. (2014). Active polymers containing Lactobacillus curvatus CRL705 bacteriocins: effectiveness assessment in wieners. International Journal of Food Microbiology, 178, 7–12.CrossRefGoogle Scholar
  6. Castellano, P., Farías, M. E., Holzapfel, W., & Vignolo, G. (2001). Sensitivity variations of Listeria strains to the bacteriocins, lactocin 705, enterocin CRL35 and nisin. Biotechnology Letters, 23(8), 605–608.CrossRefGoogle Scholar
  7. Castellano, P., González, C., Carduza, F., & Vignolo, G. (2010). Protective action of Lactobacillus curvatus CRL705 on vacuum-packaged raw beef. Effect on sensory and structural characteristics. Meat Science, 85(3), 394–401.CrossRefGoogle Scholar
  8. Castellano, P., Holzapfel, W. H., & Vignolo, G. (2004). The control of Listeria innocua and Lactobacillus sakei in broth and meat slurry with the bacteriocinogenic strain Lactobacillus casei CRL705. Food Microbiology, 21(3), 291–298.CrossRefGoogle Scholar
  9. Castellano, P., Raya, R., & Vignolo, G. (2003). Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705. International Journal of Food Microbiology, 85(1–2), 35–43.CrossRefGoogle Scholar
  10. Castellano, P., & Vignolo, G. (2006). Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Letters in Applied Microbiology, 43(2), 194–199.CrossRefGoogle Scholar
  11. Considine, K. M., Kelly, A. L., Fitzgerald, G. F., Hill, C., & Sleator, R. D. (2008). High-pressure processing-effects on microbial food safety and food quality. FEMS Microbiology Letters, 281(1), 1–9.CrossRefGoogle Scholar
  12. Cuozzo, S. A., Castellano, P., Sesma, F. J. M., Vignolo, G. M., & Raya, R. R. (2003). Differential roles of the two-component peptides of lactocin 705 in antimicrobial activity. Current Microbiology, 46, 180–183.CrossRefGoogle Scholar
  13. EFSA, European Food Safety Authority. (2013). Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-to-eat foods in the EU, 2010-2011. Part A: Listeria monocytogenes prevalence estimates. EFSA Journal, 11, 3241–3316.CrossRefGoogle Scholar
  14. Ferreira, V., Wiedmann, M., Teixeira, P., & Stasiewicz, M. J. (2014). Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. Journal of Food Protection, 77(1), 150–170.CrossRefGoogle Scholar
  15. FSIS, Food Safety and Inspection Service (2014). Controlling Listeria monocytogenes in post-lethality exposed ready-to-eat meat and poultry products. FSIS Listeria guideline, 1–143.Google Scholar
  16. Garriga, M., Aymerich, M. T., Costa, S., Monfort, J. M., & Hugas, M. (2002). Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiology, 19(5), 509–518.CrossRefGoogle Scholar
  17. Garriga, M., Grébol, N., Aymerich, M. T., Monfort, J. M., & Hugas, M. (2004). Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innovative Food Science & Emerging Technologies, 5(4), 451–457.CrossRefGoogle Scholar
  18. Gómez, D., Iguácel, L. P., Rota, M. C., Carramiñana, J. J., Ariño, A., & Yangüela, J. (2015). Occurrence of Listeria monocytogenes in ready-to-eat meat products and meat processing plants in Spain. Food, 4(3), 271–282.CrossRefGoogle Scholar
  19. Gravesen, A., Ramnath, M., Rechinger, K. B., Andersen, N., Jänsch, L., Héchard, Y., et al. (2002). High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology, 148, 2361–2369.CrossRefGoogle Scholar
  20. Gunther, N. W., Sites, J., & Sommers, C. (2015). The effects of high-pressure treatments on Campylobacter jejuni in ground poultry products containing polyphosphate additives. Poultry Science, 94(9), 2297–2302.CrossRefGoogle Scholar
  21. Hereu, A., Bover-Cid, S., Garriga, M., & Aymerich, T. (2012). High hydrostatic pressure and biopreservation of dry-cured ham to meet the food safety objectives for Listeria monocytogenes. International Journal of Food Microbiology, 154(3), 107–112.CrossRefGoogle Scholar
  22. Huang, H. W., Lung, H. M., Chang, Y. H., Yang, B. B., & Wang, C. Y. (2015). Inactivation of pathogenic Listeria monocytogenes in raw milk by high hydrostatic pressure. Foodborne Pathogens and Diseases, 12(2), 139–144.CrossRefGoogle Scholar
  23. Hugas, M., Garriga, M., & Monfort, J. M. (2002). New mild technologies in meat processing: high pressure as a model technology. Meat Science, 62(3), 359–371.CrossRefGoogle Scholar
  24. Jofré, A., Aymerich, T., Grébole, N., & Garriga, M. (2009). Efficiency of high hydrostatic pressure at 600 MPa against food-borne microorganisms by challenge tests on convenience meat products. LWT - Food Science and Technology, 42(5), 924–928.CrossRefGoogle Scholar
  25. Kalchayanand, N., Dunneb, P., Sikesb, A., & Raya, B. (2004). Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins. International Journal of Food Microbiology, 91(1), 91–98.CrossRefGoogle Scholar
  26. Kalchayanand, N., Frethem, C., Dunne, P., Sikes, A., & Ray, B. (2002). Hydrostatic pressure and bacteriocin-triggered cell wall lysis of Leuconostoc mesenteroides. Innovative Food Science & Emerging Technologies, 3(1), 33–40.CrossRefGoogle Scholar
  27. Kaletunç, G., Lee, J., Alpas, H., & Bozoglu, F. (2004). Evaluation of structural changes induced by high hydrostatic pressure in Leuconostoc mesenteroides. Applied and Environmental Microbiology, 70(2), 1116–1122.CrossRefGoogle Scholar
  28. King, A. M., Glass, K. A., Milkowski, A. L., Seman, D. L., & Sindelar, J. J. (2016). Modeling the impact of ingoing sodium nitrite, sodium ascorbate, and residual nitrite concentrations on growth parameters of Listeria monocytogenes in cooked, cured pork sausage. Journal of Food Protection, 79(2), 184–193.CrossRefGoogle Scholar
  29. Marcos, B., Aymerich, T., Monfort, J. M., & Garriga, M. (2008). High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Food Microbiology, 25(1), 177–182.CrossRefGoogle Scholar
  30. Masana, M. O., Barrio, Y. X., Palladino, P. M., Sancho, A. M., & Vaudagna, S. R. (2015). High pressure treatments combined with sodium lactate to inactivate Escherichia coli O157:H7 and spoilage microbiota in cured beef carpaccio. Food Microbiology, 46, 610–617.CrossRefGoogle Scholar
  31. Mataragas, M., Drosinos, E. H., Siana, P., Skandamis, P., & Metaxopoulos, I. (2006). Determination of the growth limits and kinetic behavior of Listeria monocytogenes in a sliced cooked cured meat product: validation of the predictive growth model under constant and dynamic temperature storage conditions. Journal of Food Protection, 69(6), 1312–1321.CrossRefGoogle Scholar
  32. McDonnell, L. M., Glass, K. A., & Sindelar, J. J. (2013). Identifying ingredients that delay outgrowth of Listeria monocytogenes in natural, organic, and clean-label ready-to-eat meat and poultry products. Journal of Food Protection, 76(8), 1366–1376.CrossRefGoogle Scholar
  33. Morgan, S. M., Ross, R. P., Beresford, T., & Hill, C. (2000). Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. Journal of Applied Microbiology, 88(3), 414–420.CrossRefGoogle Scholar
  34. Mota, M. J., Lopes, R. P., Delgadillo, I., & Saraiva, J. A. (2013). Microorganisms under high pressure—adaptation, growth and biotechnological potential. Biotechnology Advances, 31(8), 1426–1434.CrossRefGoogle Scholar
  35. Myers, K., Montoya, D., Cannon, J., Dickson, J., & Sebranek, J. (2013). The effect of high hydrostatic pressure, sodium nitrite and salt concentration on thegrowth of Listeria monocytogenes on RTE ham and turkey. Meat Science, 93(2), 263–268.CrossRefGoogle Scholar
  36. Patterson, M. F., Mackle, A. M., & Linton, M. (2011). Effect of high pressure, in combination with antilisterial agents, on the growth of Listeria monocytogenes during extended storage of cooked chicken. Food Microbiology, 28(8), 1505–1508.CrossRefGoogle Scholar
  37. Pérez Pulido, R., Toledo del Árbol, J., Grande Burgos, M. J., & Gálvez, A. (2012). Bactericidal effects of high hydrostatic pressure treatment singly or in combination with natural antimicrobials on Staphylococcus aureus in rice pudding. Food Control, 28(1), 19–24.CrossRefGoogle Scholar
  38. Pérez Pulido, R., Toledo, J., Grande, M. J., Gálvez, A., & Lucas, R. (2015). Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. International Journal of Food Microbiology, 196(2), 62–69.CrossRefGoogle Scholar
  39. Ponce, E., Pla, R., Sendra, E., Guamis, B., & Mor-Mur, M. (1998). Combined effect of nisin and high hydrostatic pressure on destruction of Listeria innocua and Escherichia coli in liquid whole egg. International Journal of Food Microbiology, 43(1–2), 15–19.CrossRefGoogle Scholar
  40. Rendueles, E., Omer, M. K., Alvseike, O., Alonso-Calleja, C., Capita, R., & Prieto, M. (2011). Microbiological food safety assessment of high hydrostatic pressure processing: a review. LWT - Food Science and Technology, 44(5), 1251–1260.CrossRefGoogle Scholar
  41. Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology, 17(1), 208–212.CrossRefGoogle Scholar
  42. Ribeiro, V. B., & Destro, M. T. (2014). Listeria monocytogenes serotype 1/2 b and 4b isolates from human clinical cases and foods show differences in tolerance to refrigeration and salt stress. Journal of Food Protection, 77(9), 1519–1526.CrossRefGoogle Scholar
  43. Ritz, M., Tholozan, J. L., Federighi, M., & Pilet, M. F. (2001). Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Applied and Environmental Microbiology, 67(5), 2240–2247.CrossRefGoogle Scholar
  44. Ross, T., Rasmussen, S., Fazil, A., Paoli, G., & Sumner, J. (2009). Quantitative risk assessment of Listeria monocytogenes in ready-to-eat meats in Australia. International Journal of Food Microbiology, 131(2–3), 128–137.CrossRefGoogle Scholar
  45. Somolinos, M., García, D., Pagán, R., & Mackey, B. (2008). Relationship between sublethal injury and microbial inactivation by the combination of high hydrostatic pressure and citral or tert-butyl hydroquinone. Applied and Environmental Microbiology, 74(24), 7570–7577.CrossRefGoogle Scholar
  46. Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructural Research, 26(1–2), 31–43.CrossRefGoogle Scholar
  47. Szerman, N., Hernández Pezzani, C., Sanow, C., Fernandez Alfaya, P., Duverne, L., Sancho, A. M., et al. (2013). Altas presiones hidrostáticas: efecto sobre lomos de cerdo curados-cocidos elaborados con distintas concentraciones de sodio. Rosario: XIV Congreso Argentino de Ciencia y Tecnología de los Alimentos (CYTAL), 23-25 de Octubre.Google Scholar
  48. Tholozan, J. L., Ritz, M., Jugiau, F., Federichi, M., & Tissier, J. P. (2000). Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella typhimurium. Journal of Applied Microbiology, 88(2), 202–212.CrossRefGoogle Scholar
  49. Tomasula, P. M., Renye, J. A., Van Hekken, D. L., Tunick, M. H., Kwoczak, R., Toht, M., et al. (2014). Effect of high-pressure processing on reduction of Listeria monocytogenes in packaged queso fresco. Journal of Dairy Science, 97(3), 1281–1295.CrossRefGoogle Scholar
  50. Vaudagna, S. R., Gonzalez, C. B., Guignon, B., Aparicio, C., Otero, L., & Sanz, P. D. (2012). The effects of high hydrostatic pressure at subzero temperature on the quality of ready-to-eat cured beef carpaccio. Meat Science, 92(2), 575–581.CrossRefGoogle Scholar
  51. Vignolo, G., Suriani, F. R., Holgado, A., & Oliver, G. (1993). Antibacterial activity of Lactobacillus strains isolated from dry fermented sausages. Journal of Applied Bacteriology, 75, 344–349.CrossRefGoogle Scholar
  52. Welti-Chanes, J., López-Malo, A., Palou, E., Bermúdez, D., Guerrero-Beltrán, J., & Barbosa-Cánovas, G. (2005). Fundamentals and applications of high pressure processing of foods. In G. Barbosa-Cánovas, M. Tapia, & M. Cano (Eds.), Novel Food Processing Technologies (pp. 156–181). USA: CRC Press.Google Scholar
  53. Youart, A. M., Huang, Y., Stewart, C. M., Kalinowski, R. M., & Legan, J. D. (2010). Modeling time to inactivation of Listeria monocytogenes in response to high pressure, sodium chloride, and sodium lactate. Journal of Food Protection, 73(10), 1793–1802.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Andrea Micaela Dallagnol
    • 1
    Email author
  • Yanina Barrio
    • 2
  • Mariana Cap
    • 2
  • Natalia Szerman
    • 2
    • 3
  • Patricia Castellano
    • 4
  • Sergio Ramón Vaudagna
    • 2
    • 3
  • Graciela Vignolo
    • 4
  1. 1.Posadas, Instituto de Materiales de Misiones (IMAM - CONICET) y Universidad Nacional de Misiones (UNaM)PosadasArgentina
  2. 2.Instituto de Tecnología de Alimentos, Centro de Investigación de Agroindustria, Instituto Nacional de Tecnología Agropecuaria (INTA)HurlinghamArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Centro de Referencia para Lactobacilos (CERELA-CONICET)San Miguel de TucumánArgentina

Personalised recommendations