Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 9, pp 1585–1594 | Cite as

Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea

  • Romina L. Abarca
  • Francisco J. Rodríguez
  • Abel Guarda
  • María J. Galotto
  • Julio E. Bruna
  • Mary A. Fávaro Perez
  • Fabiana Ramos Souza Felipe
  • Marisa Padula
Original Paper

Abstract

The aim of this study was to develop, characterize and evaluate in vitro the efficacy of active films, based on an inclusion complex formed by β-cyclodextrin, 2-nonanone and two polymer matrices (polylactic acid and low density polyethylene). The different films were characterized by scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), themogravimetric analysis (TGA), optical properties and antimicrobial activity against B. cinerea. The results showed important differences in the parameters evaluated where the level of agglomerates of additives was a key to explain these changes. Finally, microbiological analysis showed high effectiveness in reducing the Botrytis cinerea growth. The active films developed in this study were able to inhibit the growth of phytopathogenic fungus B. cinerea at different experimental conditions. The studied films have potential use for packaging fresh fruit susceptible to biological attack by this fungus.

Keywords

Active packaging 2-Nonanone Botrytis cinerea Antifungal activity Inclusion complex 

Notes

Acknowledgements

The authors are grateful to the National Commission for Scientific and Technological Research, CONICYT, for its financial support from Center of Excellence with Basal Financing, Grant FB0807 (CEDENNA). Finally, the authors thank University of Santiago de Chile for its support (Grant USA1555).

References

  1. Abarca, R., Rodríguez, F., Guarda, A., Galotto, M. J., & Bruna, J. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196, 968–975.CrossRefGoogle Scholar
  2. Aguilar-González, A. E., Palau, E., & López-Malo, A. (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mould (Botrytis cinerea) in strawberries. Innovative Food Science and Emerging Technologies, 32, 181–185.CrossRefGoogle Scholar
  3. Almenar, E. (2005). Active packaging of wild fruit. Thesis for the degree of Doctor. University of Valencia.Google Scholar
  4. Almenar, E., Del Valle, V., Catala, R., & Gavara, R. (2007a). Active package for wild strawberry fruit (Fragaria vesca L.) Journal of Agricultural and Food Chemistry, 55(6), 2240–2245.CrossRefGoogle Scholar
  5. Almenar, E., Auras, R., Rubino, M., & Harte, B. (2007b). A new technique to prevent the main post harvest diseases in berries during storage: inclusion complexes β-cyclodextrin-hexanal. International Journal of Food Microbiology, 118, 164–172.CrossRefGoogle Scholar
  6. Almenar, E., Auras, R., Wharton, P., Rubino, M., & Harte, B. (2007c). Release of acetaldehyde from β-cyclodextrins inhibits postharvest decay fungi in vitro. Journal of Agricultural and Food Chemistry, 55(17), 7205–7212.CrossRefGoogle Scholar
  7. Almenar, E., Catalá, R., Hernández-Muñoz, P., & Gavara, R. (2009). Optimization of an active package for wild strawberries based on the release of 2-nonanone. LWT- Food Science and Technology, 42(2), 587–593.CrossRefGoogle Scholar
  8. Arruda, L., Magaton, M., Bretas, R., & Ueki, M. (2015). Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polymer Testing, 43, 27–37.CrossRefGoogle Scholar
  9. Astray, G., Gonzalez-Barreiro, C., Mejuto, J. C., Rial-Otero, R., & Simal-Gándara, J. (2009). A review on the use of cyclodextrins in foods. Food Hydrocolloids, 23(7), 1631–1640.CrossRefGoogle Scholar
  10. Ayala-Zavala, J. F., Soto-Valdez, H., González-León, A., Álvarez-Parrilla, E., Martín-Belloso, O., & González-Aguilar, G. A. (2008). Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 60(3), 359–368.CrossRefGoogle Scholar
  11. Aytac, Z., Dogan, S. Y., Tekinay, T., & Uyar, T. (2014). Release and antibacterial activity of allyl isothiocyanate/−cyclodextrin complex encapsulated in electrospun nanofibers. Colloids and Surfaces B: Biointerfaces, 120, 125–131.CrossRefGoogle Scholar
  12. Bruna, J., Peñaloza, A., Guarda, A., Rodríguez, F., & Galotto, M. (2012). Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Applied Clay Science, 58, 79–87.CrossRefGoogle Scholar
  13. Cabral-Marques, H. M. (2010). A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragance Journal, 25(5), 313–326.CrossRefGoogle Scholar
  14. Carrasco, F., Pages, P., Gómes-Pérez, J., Santana, O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical. Polymers Degradation and Stability, 95, 116–125.CrossRefGoogle Scholar
  15. Chang, M. (2015). Mechanical properties and thermal stability of low-density polyethylene grafted maleic anhydride/montmorillonite nanocomposites. Journal of Industrial and Engineering Chemistry, 27, 96–101.CrossRefGoogle Scholar
  16. Chen, H., Xiao, X., Wang, J., Wu, L., Zheng, Z., & Yu, Z. (2008). Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters, 30(5), 919–923.CrossRefGoogle Scholar
  17. Chiang, M., Chu, M., & Wu, T. (2011). Effect of layered double hydroxides on the thermal degradation behavior of biodegradable poly (l-lactide) nanocomposites. Polymer Degradation and Stability, 96, 60–66.CrossRefGoogle Scholar
  18. Cifuentes, T., Cayupi, J., Celi-Barros, C., Zapata-Torres, G., Ballesteros, R., Ballesteros-Garrido, R., Abarca, B., & Jullian, C. (2016). Spectroscopic studies of the interaction of 3-(2-thienyl)-[1,2,3] triazolo[1,5-a]pyridine with 2,6-dimethyl-β-cyclodextrin and ctDNA. Organic & Biomolecular Chemistry, 14, 9760–9767.CrossRefGoogle Scholar
  19. Gong, L., Li, T., Chen, F., Duan, X., Yuan, Y., Zhang, D., & Jiang, Y. (2016). An inclusion complex of eugenol into β-cyclodextrin: preparation, and physicochemical and antifungal characterization. Food Chemistry, 196, 324–330.CrossRefGoogle Scholar
  20. Gordobil, O., Egués, I., Llano-Ponte, R., & Labidi, J. (2014). Physicochemical properties of PLA lignin blens. Polymer Degradation and Stability, 108, 330–338.CrossRefGoogle Scholar
  21. Hapiot, F., Tilloy, S., & Monflier, E. (2006). Cyclodextrins as supramolecular hosts for organometallic complexes. Chemical Reviews, 106(3), 767–781.CrossRefGoogle Scholar
  22. Hill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Science and Technology, 51(1), 86–93.CrossRefGoogle Scholar
  23. Hoogerwerf, S. W., Kets, E. P. W., & Dijksterhuis, J. (2002). High-oxygen and high-carbon dioxide containing atmospheres inhibit growth of food associated moulds. Letters in Applied Microbiology, 35(5), 419–422.CrossRefGoogle Scholar
  24. Jeong, S., Kim, D., & Seo, J. (2015). Preparation and antimicrobial properties of LDPE composite films melt-blended with polymerized urushiol powders (YPUOH) for packaging applications. Progress in Organic Coatings, 85, 76–83.CrossRefGoogle Scholar
  25. Joo, M., Auras, R., & Almenar, L. (2011). Preparation and characterization of blends made of poly(l-acid) and β-cyclodextrin: improvement of the blend properties by using a masterbatch. Carbohydrate Polymers, 86, 1022–1030.CrossRefGoogle Scholar
  26. Joo, M., Merkel, C., Auras, R., & Almenar, E. (2012). Development and characterization of antimicrobial poly (l-lactid acid) containing trans-2-hexenal trapped in cyclodextrins. International Journal of Food Microbiology, 153, 297–305.CrossRefGoogle Scholar
  27. Karathanos, V. T., Mourtzinos, I., Yannakopoulou, K., & Andrikopoulus, N. K. (2007). Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chemistry, 101(2), 652–658.CrossRefGoogle Scholar
  28. Kayaci, F., Ertas, Y., & Uyar, T. (2013). Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. Journal of Agricultural and Food Chemistry, 61(34), 8156–8165.CrossRefGoogle Scholar
  29. Kayaci, F., Sen, H. S., Durgun, E., & Uyar, T. (2014). Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Research International, 62, 424–431.CrossRefGoogle Scholar
  30. Kfoury, M., Auezova, L., Greige-Gerges, H., & Fourmentin, S. (2015). Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohydrate Polymers, 131, 264–272.CrossRefGoogle Scholar
  31. Larsen, K. L. (2002). Large cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 43(1), 1–13.CrossRefGoogle Scholar
  32. Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017–1025.CrossRefGoogle Scholar
  33. López de Dicastillo, C., Gallur, M., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2010). Immobilization of β-cyclodextrin in ethylene-vinyl alcohol copolymer for active food packaging applications. Journal of Membrane Science, 353(1–2), 184–191.CrossRefGoogle Scholar
  34. López de Dicastillo, C., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2011). Food applications of active packaging EVOH films containing cyclodextrins for the preferential scavenging of undesirable compounds. Journal of Food Engineering, 104(3), 380–386.CrossRefGoogle Scholar
  35. Martínez-Camacho, A. P., Cortéz-Rocha, M. O., Graciano-Verdugo, A. Z., Rodríguez-Félix, A., Castillo-Ortega, M. M., Burgos-Hernández, A., Ezquerra-Brauer, J. M., & Plascencia-Jatomea, M. (2013). Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydrate Polymers, 91, 666–674.CrossRefGoogle Scholar
  36. Mazloom, A., Farhadyar, N., Azarakhshi, F., & Erfani, S. (2014). Nanoparticles of cyclodextrins and their applications in food technology. International Journal of Bio-Inorganic Hybrid Nanomaterials, 3, 5–10.Google Scholar
  37. Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015). Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innovative Food Science and Emerging Technologies, 28, 73–80.CrossRefGoogle Scholar
  38. Molinaro, S., Cruz, M., Boaro, M., Sensidoni, A., Lagazio, C., Morris, M., & Kerry, J. (2013). Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposites films. Journal of Food Engineering, 117, 113–123.CrossRefGoogle Scholar
  39. Pérez, G. (2013). 2-Nonanone incorporating in films of linear low density polyethylene (LLDPE) by impregnation with supercritical CO2. Thesis to obtain the degree of food engineer. University of Santiago de Chile.Google Scholar
  40. Piercey, M. J., Mazzanti, G., Budge, S. M., Delaquis, P. J., Paulson, A. T., & Hansen, L. T. (2012). Antimicrobial activity of cyclodextrin entrapped allyl isothiocyanate in a model system and packaged fresh-cut onions. Food Microbiology, 30(1), 213–218.CrossRefGoogle Scholar
  41. Plackett, D., Ghanbari-Siahkali, A., & Szente, L. (2007). Behavior of α- and β-cyclodextrin-encapsulated allyl isothiocyanate as slow-release additives in polylactide-co-polycaprolactone films. Journal of Applied Polymer Science, 105(5), 2850–2857.CrossRefGoogle Scholar
  42. Poley, L., Siqueira, A., da Silva, M., & Vargas, H. (2004). Photothermal characterization of low density polyethylene food package. Polymers: Science and Technology, 14, 8–12.Google Scholar
  43. Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. (2014). Development of novel nanobiocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 162, 149–155.CrossRefGoogle Scholar
  44. Raouche, S., Mauricio-Iglesias, M., Peyron, S., Guillard, V., & Gontard, N. (2011). Combined effect of high pressure treatment and anti-microbial bio-sourced materials on microorganisms’ growth in model food during storage. Innovative Food Science and Emerging Technologies, 12(4), 426–434.CrossRefGoogle Scholar
  45. Rhim, J. (2013). Preparation and characterization of vacuum sputter silver coated PLA film. LWT-Food Science and Technology, 54, 477–484.CrossRefGoogle Scholar
  46. Rodríguez, F., Coloma, A., Galotto, M., Guarda, A., & Bruna, J. (2012). Effect of organoclay content and molecular weigth on cellulose acetate nanocomposites properties. Polymer Degradation and Stability, 97, 1996–2001.CrossRefGoogle Scholar
  47. Roy, P., Surekha, P., Rajagopal, C., & Chaoudhary, V. (2007). Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant. Express Polymer Letters, 1, 208–216.CrossRefGoogle Scholar
  48. Rudnik, E. (2008). Compostable polymer materials. Amsterdam: Elsevier.Google Scholar
  49. Santos, E. H., Kamimura, J. A., Hill, L. E., & Gomes, C. L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT-Food Science and Technology, 60(1), 583–592.CrossRefGoogle Scholar
  50. Serrano, M., Martínez-Romero, D., Castillo, S., Guillén, F., & Valero, D. (2005). The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innovative Food Science and Emerging Technologies, 6(1), 115–123.CrossRefGoogle Scholar
  51. Siro, I., Fenyvesi, E., Szente, L., Meulenaer, B. D., Devlieghere, F., Orgovanyi, J., Senyi, J., & Barta, J. (2006). Release of alpha-tocopherol from antioxidative low-density polyethylene film into fatty food simulant: influence of complexation in beta-cyclodextrin. Food Additives and Contaminants, 23(8), 845–853.CrossRefGoogle Scholar
  52. Soottitantawat, A., Takayama, K., Okamura, K., Muranaka, D., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2005). Microencapsulation of l-menthol by spray drying and its release characteristics. Innovative Food Science and Emerging Technologies, 6(2), 163–170.CrossRefGoogle Scholar
  53. Sunilkumar, M., Francis, T., Thachil, E., & Sujith. (2012). Low density polyethylene-chitosan composites: a study based on biodegradation. Chemical Engineering Journal, 204, 114–124.CrossRefGoogle Scholar
  54. Suzuki, T., Ei, A., Takada, Y., Uehara, H., Yamanobe, T., & Takahashi, K. (2014). Modification of physical properties of poly (l-lactic acid) addition of methyl-β-cyclodextrin. Journal of Organic Chemistry, 10, 2997–3006.Google Scholar
  55. Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32, 235–245.CrossRefGoogle Scholar
  56. Vaughn, S., Spencer, G., & Shasha, B. (1993). Volatile compounds from raspberry and strawberry fruit inhibit postharvest decay fungi. Journal of Food Science, 58, 793–796.CrossRefGoogle Scholar
  57. Wen, P., Zhu, D.-H., Wu, H., Zong, M.-H., Jing, Y.-R., & Han, S.-Y. (2016a). Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 59, 366–376.CrossRefGoogle Scholar
  58. Wen, P., Zhu, D.-H., Feng, K., Liu, F.-J., Lou, W.-Y., Li, N., Zong, M.-H., & Wu, H. (2016b). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/b-cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry, 196, 996–1004.CrossRefGoogle Scholar
  59. Xu, X., Li, Q., & Xiong, C. (2016). Crystallization behavior of poly(p-dioxanone) with cyclodextrin complex and nucleation mechanism discussion. RSC Advances, 6, 87169–87178.CrossRefGoogle Scholar
  60. Zheng, Y., Haworth, I. S., Zuo, Z., Chow, M. S. S., & Chow, A. H. L. (2005). Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes. Journal of Pharmaceutical Sciences, 94(5), 1079–1089.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Romina L. Abarca
    • 1
    • 2
  • Francisco J. Rodríguez
    • 1
    • 2
  • Abel Guarda
    • 1
    • 2
  • María J. Galotto
    • 1
    • 2
  • Julio E. Bruna
    • 1
    • 2
  • Mary A. Fávaro Perez
    • 3
  • Fabiana Ramos Souza Felipe
    • 3
  • Marisa Padula
    • 3
  1. 1.Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Food Packaging Laboratory (LABEN CHILE), Department of Food Science and Technology, Faculty of TechnologyUniversity of Santiago de ChileSantiagoChile
  2. 2.Edificio de AlimentosUSACHSantiagoChile
  3. 3.Packaging Technology Center (CETEA)Institute of Food Technology (ITAL)CampinasBrazil

Personalised recommendations