Food and Bioprocess Technology

, Volume 10, Issue 7, pp 1281–1296 | Cite as

Waxy Wheat Flour as a Freeze-Thaw Stable Ingredient Through Rheological Studies

  • Ryan J. Kowalski
  • Alexander Meldrum
  • Siyuan Wang
  • Helen Joyner (Melito)
  • Girish M. Ganjyal
Original Paper
  • 107 Downloads

Abstract

A large variety of foods including soups, sauces, and other items that may experience freezing use specialty ingredients to prevent negative effects of freezing. While multiple modified starches derived from maize are available to do this, unmodified flours that may be able to carry a “natural” label are not used widely. To begin to analyze whether other alternative solutions are possible in unutilized flours, waxy wheat flour was subjected to freeze-thaw characterization through rheology to provide insight to textural changes that may occur. In order to determine freeze-thaw-induced changes, gelatinized solutions of waxy and regular wheat flours were subjected to shear rate sweeps, oscillatory rheological tests, and large amplitude oscillatory shear testing before and after freeze-thaw cycles. Minimal changes in rheological behaviors were observed in waxy wheat samples compared to regular wheat samples. Waxy wheat flour was also analyzed through differential scanning calorimetry both before and after being subjected to ten freeze-thaw cycles. Syneresis effects were also determined after each freeze-thaw cycle. Waxy wheat exhibited <5% water loss while regular wheat showed 25–40% water loss. Differential scanning calorimetry after freeze-thaw cycles were found to exhibit negligible retrogradation enthalpy values in waxy wheat samples as compared to 1.3–1.8 J/g in regular wheat samples. Results suggested that waxy wheat can serve as a novel and natural food ingredient for freeze-thaw stabilization in foods such as soups, dressings, and frozen meals.

Keywords

Waxy wheat Rheology Freeze-thaw Stabilizing agent 

References

  1. Abdel-Aal, E.-S. M., Hucl, P., Chibbar, R. N., Han, H. L., & Demeke, T. (2002). Physiochemical and structural characteristics of flours and staches from waxy and nonwaxy wheats. Cereal Chemistry., 79(3), 458–464.CrossRefGoogle Scholar
  2. Alvarez, M. D., Fernández, C., & Canet, W. (2010). Oscillatory rheological properties of fresh and frozen/thawed mashed potatoes as modified by different cryoprotectants. Food and Bioprocess Technology., 3(1), 55–70.CrossRefGoogle Scholar
  3. Bhattacharya, M., Erazo-Castrejon, S. V., Doehlert, D. C., & McMullen, M. S. (2002). Staling of bread as affected by waxy wheat flour blends. Cereal Chemistry., 79(2), 178–182.CrossRefGoogle Scholar
  4. Bhattacharya, M., Langstaff, T. M., & Berzonsky, W. A. (2003). Effect of frozen storage and freeze–thaw cycles on the rheological and baking properties of frozen doughs. Food Research International., 36(4), 365–372.CrossRefGoogle Scholar
  5. Campanella, O. H., & Peleg, M. (1987). Determination of the yield stress of semi-liquid foods from squeezing flow data. Journal of Food Science., 52(1), 214–215.CrossRefGoogle Scholar
  6. Chakraborty, M., Matkovic, K., Grier, D. G., Jarabek, E. L., Berzonsky, W. A., McMullen, M. S., & Doehlert, D. C. (2004). Physicochemical and functional properties of tetraploid and hexaploid waxy wheat starch. Starch-Stärke., 56(8), 339–347.CrossRefGoogle Scholar
  7. Eleya, M. O., & Turgeon, S. (2000). Rheology of κ-carrageenan and β-lactoglobulin mixed gels. Food Hydrocolloids, 14(1), 29–40.CrossRefGoogle Scholar
  8. Ewoldt RH, Winter P & McKinley GH (2007) MITlaos Version 2.1 Beta for MATLAB. MATLAB-based data analysis software for characterizing nonlinear viscoelastic responses to oscillatory shear strain. In. p^pp. self-published, Cambridge, MA.Google Scholar
  9. Ewoldt, R. H., Hosoi, A., & McKinley, G. H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology (1978-present)., 52(6), 1427–1458.CrossRefGoogle Scholar
  10. Graybosch, R. A. (1998). Waxy wheat: Origin, properties and prospects. Trends in Food Science & Technology., 9, 135–142.CrossRefGoogle Scholar
  11. Graybosch RA & Hansen LE (2015) Functionality of chemically modified waxy, partial waxy and wild-type starches from common wheat. Starch-Stärke.Google Scholar
  12. Graybosch, R. A., Ohm, J.-B., & Dykes, L. (2016). Observations on the quality characteristics of waxy (amylose-free) winter wheats. Cereal Chemistry Journal., 93(6), 599–604.CrossRefGoogle Scholar
  13. Guzman, C., & Alvarez, J. B. (2016). Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. Theoretical and Applied Genetics, 129(1), 1–16.CrossRefGoogle Scholar
  14. Hayakawa, K., Tanaka, K., Nakamura, T., Endo, S., & Hoshino, T. (2004). End use quality of waxy wheat flour in various grain-based foods. Cereal Chemistry., 81, 666–672.CrossRefGoogle Scholar
  15. Joyner (Melito), H. S., & Meldrum, A. (2016). Rheological study of different mashed potato preparations using large amplitude oscillatory shear and confocal microscopy. Journal of Food Engineering., 169, 326–337.CrossRefGoogle Scholar
  16. Kowalski, R. J., Morris, C. F., & Ganjyal, G. M. (2015). Waxy soft white wheat: extrusion characteristics and thermal and rheological properties. Cereal Chemistry., 92(2), 145–153.CrossRefGoogle Scholar
  17. Lim, T., Uhl, J. T., & Prud'homme, R. K. (1984). Rheology of self-associating concentrated xanthan solutions. Journal of Rheology (1978-present)., 28(4), 367–379.CrossRefGoogle Scholar
  18. Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J., & Ding, Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, 36, 45–52.CrossRefGoogle Scholar
  19. Mariotti, M., Sinelli, N., Catenacci, F., Pagani, M. A., & Lucisano, M. (2009). Retrogradation behaviour of milled and brown rice pastes during ageing. Journal of Cereal Science., 49(2), 171–177.CrossRefGoogle Scholar
  20. Melito, H. S., Daubert, C. R., & Foegeding, E. A. (2012). Validation of a large amplitude oscillatory shear protocol. Journal of Food Engineering., 113(1), 124–135.CrossRefGoogle Scholar
  21. Morita, N., Maeda, T., Miyazaki, M., Yamamori, M., Miura, H., & Ohtsuka, I. (2002). Dough and baking properties of high-amylose and waxy wheat flours. Cereal Chemistry., 79(4), 491–495.CrossRefGoogle Scholar
  22. Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S., & Nagamine, T. (1995). Production of waxy (amylose-free) wheats. Molecular and General Genetics., 248(3), 253–259.CrossRefGoogle Scholar
  23. Nakamura T, Vrinten P, Shimbata T & Saito M (2015) Starch modification: a model for wheat MAS breeding. 265–273.Google Scholar
  24. Reddy, I., & Seid, P. A. (2000). Modified waxy wheat starch compared to modified waxy corn starch. Journal of Cereal Science., 31(1), 25–39.CrossRefGoogle Scholar
  25. Rosalina, I., & Bhattacharya, M. (2002). Dynamic rheological measurements and analysis of starch gels. Carbohydrate Polymers., 48(2), 191–202.CrossRefGoogle Scholar
  26. Sasaki, T., Yasui, T., Matsuki, J., & Sataki, T. (2002). Rheological properties of mixed gels using waxy and non-waxy wheat starch. Starch-Stärke., 54(9), 410–414.CrossRefGoogle Scholar
  27. Sayaslan, A., Seib, P. A., & Chung, O. K. (2006). Wet-milling properties of waxy wheat flours by two laboratory methods. Journal of Food Engineering., 72(2), 167–178.CrossRefGoogle Scholar
  28. Schmidt, K. A., Herald, T. J., & Khatib, K. A. (2001). Modified wheat starches used as stabilizers in set-style yogurt. Journal of Food Quality., 24(5), 421–434.CrossRefGoogle Scholar
  29. Van Hung, P., Maeda, T., & Morita, N. (2006). Waxy and high-amylose wheat starches and flours—characteristics, functionality and application. Trends in Food Science & Technology., 17(8), 448–456.CrossRefGoogle Scholar
  30. White, P. J., Abbas, I. R., & Johnson, L. A. (1989). Freeze-thaw stability and refrigerated-storage retrogradation of starches. Starch - Stärke., 41(5), 176–180.CrossRefGoogle Scholar
  31. Yi, J., Kerr, W. L., & Johnson, J. W. (2009). Effects of waxy wheat flour and water on frozen dough and bread properties. Journal of Food Science., 74(5), E278–E284.CrossRefGoogle Scholar
  32. Yoo, S.-H., & Jane, J.-L. (2002). Structural and physical characteristics of waxy and other wheat starches. Carbohydrate Polymers., 49(3), 297–305.CrossRefGoogle Scholar
  33. Zeng, M., Morris, C. F., Batey, I. L., & Wrigley, C. W. (1997). Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chemistry., 74(1), 63–71.CrossRefGoogle Scholar
  34. Zheng, G. H., & Sosulski, F. W. (1998). Determination of water separation from cooked starch and flour pastes after refrigeration and freeze-thaw. Journal of Food Science., 63(1), 134–139.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ryan J. Kowalski
    • 1
  • Alexander Meldrum
    • 2
  • Siyuan Wang
    • 1
  • Helen Joyner (Melito)
    • 2
  • Girish M. Ganjyal
    • 1
  1. 1.School of Food ScienceWashington State UniversityPullmanUSA
  2. 2.School of Food ScienceUniversity of IdahoMoscowUSA

Personalised recommendations