Food and Bioprocess Technology

, Volume 10, Issue 5, pp 940–948 | Cite as

Extraction of Flaxseed Oil: A Comparative Study of Three-Phase Partitioning and Supercritical Carbon Dioxide Using Response Surface Methodology

  • Nikhil G Kulkarni
  • Jayaranjan R KarEmail author
  • Rekha S Singhal
Original Paper


Flaxseed has gained significant interest as a source of edible oil that is rich in omega-3 fatty acids, high content of flaxseed proteins and lignans that are known to be therapeutic. Low oxidative stability of flaxseed oil necessitates the use of extraction technologies that are advanced and economically viable than the currently used cold press extraction. This work compares the yield and quality of the flaxseed oil obtained by individually optimized supercritical carbon dioxide extraction (SCE), three-phase partitioning (TPP), solvent extraction and the reported values of cold press extraction. The yields of oil obtained were comparable for SCE (30.03% w/w), TPP (22.46% w/w), ultrasonic pre-treated TPP (27.05% w/w), enzyme-pre-treated TPP (26.24% w/w) and reported value of 25.50% w/w in commercial screw-press expeller but lower than solvent extraction (41.53% w/w). Amongst the techniques evaluated, enzyme-pre-treated TPP using Accellerase® is recommended due to excellent protein recovery of 86.62%, better oil quality (iodine value, peroxide value, acid value and 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity) and a potential of being industrially scalable.

Graphical Abstract


Flaxseed Solvent extraction Supercritical fluid extraction Three-phase partitioning Pre-treatments Oil quality 



First author Nikhil G Kulkarni is grateful to Technical Education Quality Improvement Programme (TEQIP), Government of India, and assisted by World Bank for their financial support in carrying out this work.

Supplementary material

11947_2017_1877_MOESM1_ESM.pdf (113 kb)
Table S1 (PDF 113 kb)
11947_2017_1877_MOESM2_ESM.pdf (106 kb)
Table S2 (PDF 106 kb)
11947_2017_1877_MOESM3_ESM.pdf (118 kb)
Table S3 (PDF 117 kb)
11947_2017_1877_MOESM4_ESM.pdf (109 kb)
Table S4 (PDF 108 kb)
11947_2017_1877_MOESM5_ESM.pdf (106 kb)
Fig S1 (PDF 105 kb)
11947_2017_1877_MOESM6_ESM.pdf (96 kb)
Fig S2 (PDF 96 kb)
11947_2017_1877_MOESM7_ESM.pdf (91 kb)
Fig S3 (PDF 90 kb)
11947_2017_1877_MOESM8_ESM.pdf (107 kb)
Fig S4 (PDF 107 kb)


  1. Akanda, M. J. H., Sarker, M. Z. I., Ferdosh, S., Manap, M. Y. A., Ab Rahman, N. N. N., & Ab Kadir, M. O. (2012). Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources. Molecules, 17(12), 1764–1794. doi: 10.3390/molecules17021764.CrossRefGoogle Scholar
  2. Alfonsi, K., Colberg, J., Dunn, P. J., Fevig, T., Jennings, S., Johnson, T. A., et al. (2008). Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry, 10(1), 31. doi: 10.1039/b711717e.CrossRefGoogle Scholar
  3. Almario, R. U., & Karakas, S. E. (2013). Lignan content of the flaxseed influences its biological effects in healthy men and women. Journal of the American College of Nutrition, 32(3), 194–199. doi: 10.1080/07315724.2013.791147.CrossRefGoogle Scholar
  4. Association of Official Analytical Chemists, & Horwitz, W. (2000). Official methods of analysis of AOAC international. AOAC international. Arlington, Va: AOAC International.Google Scholar
  5. Baker, P. (1961). The micro-Kjeldahl determination of nitrogen an investigation of the effects of added salt and catalysts. Talanta, 8(2–3), 57–71. doi: 10.1016/0039-9140(61)80040-4.CrossRefGoogle Scholar
  6. Bozan, B., & Temelli, F. (2002). Supercritical CO2 extraction of flaxseed. Journal of the American Oil Chemists’ Society, 79(3), 231–235. doi: 10.1007/s11746-002-0466-x.CrossRefGoogle Scholar
  7. Chaudhari, S.A., Kar, J. R., & Singhal, R. S. (2015). Immobilization of proteins in alginate: functional properties and applications. Current Organic Chemistry, 19, 1732–1754. doi: 10.2174/1385272819666150429232110.
  8. Chisti, Y., & Moo-Young, M. (1986). Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 8(4), 194–204. doi: 10.1016/0141-0229(86)90087-6.CrossRefGoogle Scholar
  9. Chougle, J. A., Singhal, R. S., & Baik, O. D. (2014). Recovery of astaxanthin from Paracoccus NBRC 101723 using ultrasound-assisted three phase partitioning (UA-TPP). Separation Science and Technology, 49(6), 811–818. doi: 10.1080/01496395.2013.872146.CrossRefGoogle Scholar
  10. Cvjetko, M., Jokić, S., Lepojević, Ž., Vidović, S., Marić, B., & Radojčić Redovniković, I. (2012). Optimization of the supercritical CO2 extraction of oil from rapeseed using response surface methodology. Food Technology and Biotechnology, 50(2), 208–215.Google Scholar
  11. Dennison, C., & Lovrien, R. (1997). Three phase partitioning: concentration and purification of proteins. Protein Expression and Purification, 11(2), 149–161. doi: 10.1006/prep.1997.0779.CrossRefGoogle Scholar
  12. Domínguez, H., Núñez, M. J., & Lema, J. M. (1994). Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chemistry, 49(3), 271–286. doi: 10.1016/0308-8146(94)90172-4.CrossRefGoogle Scholar
  13. Dutta, R., Sarkar, U., & Mukherjee, A. (2015). Process optimization for the extraction of oil from Crotalaria juncea using three phase partitioning. Industrial Crops and Products, 71, 89–96. doi: 10.1016/j.indcrop.2015.03.024.CrossRefGoogle Scholar
  14. Feng, J., Lei, H., & Ge, F. (2015). Modeling of the extraction process of tea seed oil with supercritical carbon dioxide. Brazilian Journal of Chemical Engineering, 32(4), 941–947. doi: 10.1590/0104-6632.20150324s20140252.CrossRefGoogle Scholar
  15. Gagaoua, M., Hoggas, N., & Hafid, K. (2015). Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale roscoe rhizomes. International Journal of Biological Macromolecules, 73, 245–252. doi: 10.1016/j.ijbiomac.2014.10.069.CrossRefGoogle Scholar
  16. Gopalan, C., Sastri, B. V. R., & Balasubramanian, S. C. (1989). Nutritive value of Indian foods. National Institute of Nutrition, Indian Council of Medical Research.
  17. Harde, S. M., Kagliwal, L. D., Singhal, R. S., & Patravale, V. B. (2013). Supercritical fluid extraction of forskolin from Coleus forskohlii roots. Journal of Food Engineering, 117(4), 443–449. doi: 10.1016/j.jfoodeng.2012.12.012.CrossRefGoogle Scholar
  18. Harde, S. M., & Singhal, R. S. (2012). Extraction of forskolin from Coleus forskohlii roots using three phase partitioning. Separation and Purification Technology, 96, 20–25. doi: 10.1016/j.seppur.2012.05.017.CrossRefGoogle Scholar
  19. ISI (1986) Methods of sampling and test for oils and fats. IS: 543 Bureau of Indian. Standards. Manak Bhawan, New Delhi.Google Scholar
  20. Kagliwal, L. D., Patil, S. C., Pol, A. S., Singhal, R. S., & Patravale, V. B. (2011). Separation of bioactives from seabuckthorn seeds by supercritical carbon dioxide extraction methodology through solubility parameter approach. Separation and Purification Technology, 80(3), 533–540. doi: 10.1016/j.seppur.2011.06.008.CrossRefGoogle Scholar
  21. Kagliwal, L. D., Pol, A. S., Patil, S. C., Singhal, R. S., & Patravale, V. B. (2012). Antioxidant-rich extract from dehydrated seabuckthorn berries by supercritical carbon dioxide extraction. Food and Bioprocess Technology, 5(7), 2768–2776. doi: 10.1007/s11947-011-0613-8.CrossRefGoogle Scholar
  22. Kar, J. R., Hallsworth, J. E., & Singhal, R. S. (2015). Fermentative production of glycine betaine and trehalose from acid whey using Actinopolyspora halophila (MTCC 263). Environmental Technology & Innovation, 3, 68–76. doi: 10.1016/j.eti.2015.02.001.CrossRefGoogle Scholar
  23. Kar, J. R., & Singhal, R. S. (2015). Investigations on ideal mode of cell disruption in extremely halophilic Actinopolyspora halophila (MTCC 263) for efficient release of glycine betaine and trehalose. Biotechnology Reports, 5, 89–97. doi: 10.1016/j.btre.2014.12.005.CrossRefGoogle Scholar
  24. Kiss, é., Szamos, J., Tamás, B., & Borbás, R. (1998). Interfacial behavior of proteins in three-phase partitioning using salt-containing water/tert-butanol systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142(2–3), 295–302. doi: 10.1016/S0927-7757(98)00361-6.CrossRefGoogle Scholar
  25. Kurmudle, N. N., Bankar, S. B., Bajaj, I. B., Bule, M. V., & Singhal, R. S. (2011). Enzyme-assisted three phase partitioning: a novel approach for extraction of turmeric oleoresin. Process Biochemistry, 46(1), 423–426. doi: 10.1016/j.procbio.2010.09.010.CrossRefGoogle Scholar
  26. Lang, Q. (2001). Supercritical fluid extraction in herbal and natural product studies—a practical review. Talanta, 53(4), 771–782. doi: 10.1016/S0039-9140(00)00557-9.CrossRefGoogle Scholar
  27. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. doi: 10.1021/ac60147a030.CrossRefGoogle Scholar
  28. Montgomery, D. C. (2009). Introduction to statistical quality control (6th ed.). Hoboken, N.J: Wiley.Google Scholar
  29. Mulchandani, K., Kar, J. R., & Singhal, R. S. (2015). Extraction of lipids from Chlorella saccharophila using high-pressure homogenization followed by three phase partitioning. Applied Biochemistry and Biotechnology, 176, 1613–1626. doi: 10.1007/s12010-015-1665-4.CrossRefGoogle Scholar
  30. Ondrejovič, M., Chmelová, D., & Maliar, T. (2011). Response surface methodology for optimization of the extraction of flax (Linum usitatissimum) seed oil. Potravinarstvo, 5(4). doi: 10.5219/168.
  31. Oomah, B. D. (2001). Flaxseed as a functional food source. Journal of the Science of Food and Agriculture, 81(9), 889–894. doi: 10.1002/jsfa.898.CrossRefGoogle Scholar
  32. Pakhale, S. V., & Bhagwat, S. S. (2016). Purification of serratiopeptidase from Serratia marcescens NRRL B 23112 using ultrasound assisted three phase partitioning. Ultrasonics Sonochemistry, 31, 532–538. doi: 10.1016/j.ultsonch.2016.01.037.CrossRefGoogle Scholar
  33. Phongthai, S., & Rawdkuen, S. (2015). Preparation of rice bran protein isolates using three-phase partitioning and its properties. Food and Applied Bioscience Journal, 3(2), 137–149.Google Scholar
  34. Piras, A., Rosa, A., Falconieri, D., Porcedda, S., Dessì, M. A., & Marongiu, B. (2009). Extraction of oil from wheat germ by supercritical CO2. Molecules, 14(7), 2573–2581. doi: 10.3390/molecules14072573.CrossRefGoogle Scholar
  35. Pradhan, R. C., Meda, V., Rout, P. K., Naik, S., & Dalai, A. K. (2010). Supercritical CO2 extraction of fatty oil from flaxseed and comparison with screw press expression and solvent extraction processes. Journal of Food Engineering, 98(4), 393–397. doi: 10.1016/j.jfoodeng.2009.11.021.CrossRefGoogle Scholar
  36. Reverchon, E., & Marrone, C. (2001). Modeling and simulation of the supercritical CO2 extraction of vegetable oils. The Journal of Supercritical Fluids, 19(2), 161–175. doi: 10.1016/S0896-8446(00)00093-0.CrossRefGoogle Scholar
  37. Rodrigues, C. E. C., Goncalves, C. B., Batista, E., & Meirelles, A. J. A. (2007). Deacidification of vegetable oils by solvent extraction. Recent Patents on Engineering, 1(1), 95–102. doi: 10.2174/187221207779814699.CrossRefGoogle Scholar
  38. Sagu, S. T., Nso, E. J., Homann, T., Kapseu, C., & Rawel, H. M. (2015). Extraction and purification of beta-amylase from stems of Abrus precatorius by three phase partitioning. Food Chemistry, 183, 144–153. doi: 10.1016/j.foodchem.2015.03.028.CrossRefGoogle Scholar
  39. Shah, S., Sharma, A., & Gupta, M. N. (2004). Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Industrial Crops and Products, 20(3), 275–279. doi: 10.1016/j.indcrop.2003.10.010.CrossRefGoogle Scholar
  40. Sharma, A., Khare, S. K., & Gupta, M. N. (2002). Three phase partitioning for extraction of oil from soybean. Bioresource Technology, 85(3), 327–329. doi: 10.1016/S0960-8524(02)00138-4.CrossRefGoogle Scholar
  41. Shim, Y. Y., Gui, B., Arnison, P. G., Wang, Y., & Reaney, M. J. T. (2014). Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: a review. Trends in Food Science & Technology, 38(1), 5–20. doi: 10.1016/j.tifs.2014.03.011.CrossRefGoogle Scholar
  42. Siger, A., Nogala-Kalucka, M., & Lampart-Szczapa, E. (2008). The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Journal of Food Lipids, 15(2), 137–149. doi: 10.1111/j.1745-4522.2007.00107.x.CrossRefGoogle Scholar
  43. Tan, Z., Yang, Z., Yi, Y., Wang, H., Zhou, W., Li, F., & Wang, C. (2016). Extraction of oil from flaxseed (Linum usitatissimum L.) using enzyme-assisted three-phase partitioning. Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-016-2068-x.Google Scholar
  44. Varakumar, S., Umesh, K. V., & Singhal, R. S. (2017). Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry, 216, 27–36. doi: 10.1016/j.foodchem.2016.07.180.CrossRefGoogle Scholar
  45. Vetal, M. D., & Rathod, V. K. (2015). Three phase partitioning a novel technique for purification of peroxidase from orange peels (Citrus sinenses). Food and Bioproducts Processing, 94, 284–289. doi: 10.1016/j.fbp.2014.03.007.CrossRefGoogle Scholar
  46. Vidhate, G. S., & Singhal, R. S. (2013). Extraction of cocoa butter alternative from kokum (Garcinia indica) kernel by three phase partitioning. Journal of Food Engineering, 117(4), 464–466. doi: 10.1016/j.jfoodeng.2012.10.051.CrossRefGoogle Scholar
  47. Wanasundara, P. K. J. P. D., Shahidi, F., & Shukla, V. K. S. (1997). Endogenous antioxidants from oilseeds and edible oils. Food Reviews International, 13(2), 225–292. doi: 10.1080/87559129709541106.CrossRefGoogle Scholar
  48. Zhang, Y. H. P., Hong, J., & Ye, X. (2009). Cellulase assays. In J. R. Mielenz (Ed.), Biofuels (Vol. 581, pp. 213–231). Totowa, NJ: Humana Press Accessed 7 September 2015.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nikhil G Kulkarni
    • 1
  • Jayaranjan R Kar
    • 1
    Email author
  • Rekha S Singhal
    • 1
  1. 1.Department of Food Engineering and TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations