Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 3, pp 413–433 | Cite as

Applications of Response Surface Methodology in the Food Industry Processes

  • Mahmoud Yolmeh
  • Seid Mahdi JafariEmail author
Review

Abstract

Response surface methodology (RSM) is a technique widely used to optimize various processes. This review presents the state-of-the-art applications of RSM in the optimization of different food processes such as extraction, drying, blanching, enzymatic hydrolysis and clarification, production of microbial metabolites, and formulation. The principles of RSM, its implementation steps, and different designs (full factorial design (FFD), Box-Behnken design (BBD), and central composite design (CCD)) are described. Furthermore, this work presents a comprehensive study of RSM literature recently published about the various food process fields and evaluating their RSM elements summarized in tables. Finally, the challenges and future prospects of using this statistical technique in the food industry processes are discussed. It can be concluded that appropriate selection of RSM design, independent variables (screening), and levels of the factors significantly influences the successful application of RSM. In addition, validity evaluation of the optimum conditions predicted through RSM is crucial too.

Keywords

Response surface methodology Extraction Drying Biotechnology Optimization Food industry 

References

  1. Abdel-Fattah, Y. R. (2002). Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnology Letters, 24(14), 1217–1222.CrossRefGoogle Scholar
  2. Abu-Izza, K. A., Garcia-Contreras, L., & Lu, D. R. (1996). Preparation and evaluation of sustained release AZT-loaded microspheres: optimization of the release characteristics using response surface methodology. Journal of Pharmaceutical Sciences, 85(2), 144–149.CrossRefGoogle Scholar
  3. Açıkel, Ü., Erşan, M., & Açıkel, Y. S. (2010). Optimization of critical medium components using response surface methodology for lipase production by Rhizopus delemar. Food and Bioproducts Processing, 88(1), 31–39.CrossRefGoogle Scholar
  4. Acosta, O., Víquez, F., & Cubero, E. (2008). Optimisation of low calorie mixed fruit jelly by response surface methodology. Food Quality and Preference, 19(1), 79–85.CrossRefGoogle Scholar
  5. Ade-Omowaye, B., Rastogi, N., Angersbach, A., & Knorr, D. (2002). Osmotic dehydration behavior of red paprika (Capsicum annuum L.). Journal of Food Science, 67(5), 1790–1796.CrossRefGoogle Scholar
  6. Agatonovic-Kustrin, S., Zecevic, M., Zivanovic, L., & Tucker, I. (1998). Application of neural networks for response surface modeling in HPLC optimization. Analytica Chimica Acta, 364(1), 265–273.CrossRefGoogle Scholar
  7. Ahn, J.-H., Kim, Y.-P., Lee, Y.-M., Seo, E.-M., Lee, K.-W., & Kim, H.-S. (2008). Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107(1), 98–105.CrossRefGoogle Scholar
  8. Alam, M. S., Amarjit, S., & Sawhney, B. (2010). Response surface optimization of osmotic dehydration process for aonla slices. Journal of Food Science and Technology, 47(1), 47–54.CrossRefGoogle Scholar
  9. Aliakbarian, B., De Faveri, D., Converti, A., & Perego, P. (2008). Optimisation of olive oil extraction by means of enzyme processing aids using response surface methodology. Biochemical Engineering Journal, 42(1), 34–40.CrossRefGoogle Scholar
  10. Alizadeh, M., Hamedi, M., & Khosroshahi, A. (2005). Optimizing sensorial quality of Iranian white brine cheese using response surface methodology. Journal of Food Science, 70(4), S299–S303.CrossRefGoogle Scholar
  11. Alvarez, M. D., & Canet, W. (1999). Optimization of stepwise blanching of frozen-thawed potato tissues (cv. Monalisa). European Food Research and Technology, 210(2), 102–108.CrossRefGoogle Scholar
  12. Assadpour, E., Maghsoudlou, Y., Jafari, S.-M., Ghorbani, M., & Aalami, M. (2016). Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. International Journal of Biological Macromolecules, 86, 197–207.CrossRefGoogle Scholar
  13. Bai, X. L., Yue, T. L., Yuan, Y. H., & Zhang, H. W. (2010). Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. Journal of Separation Science, 33(23–24), 3751–3758.CrossRefGoogle Scholar
  14. Baş, D., & Boyacı, İ. H. (2007). Modeling and optimization I: usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845.CrossRefGoogle Scholar
  15. Beg, Q. K., Sahai, V., & Gupta, R. (2003). Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochemistry, 39(2), 203–209.CrossRefGoogle Scholar
  16. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977.CrossRefGoogle Scholar
  17. Bimakr, M., Rahman, R. A., Ganjloo, A., Taip, F. S., Salleh, L. M., & Sarker, M. Z. I. (2012). Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves by using response surface methodology. Food and Bioprocess Technology, 5(3), 912–920.CrossRefGoogle Scholar
  18. Bocchini, D., Alves-Prado, H., Baida, L., Roberto, I., Gomes, E., & Da Silva, R. (2002). Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology. Process Biochemistry, 38(5), 727–731.CrossRefGoogle Scholar
  19. Box, G. E., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475.CrossRefGoogle Scholar
  20. Box, G. E., & Wilson, K. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1), 1–45.Google Scholar
  21. Baranda, A. B., Etxebarria, N., Jimenez, R. M., & Alonso, R. M. (2005). Development of a liquid–liquid extraction procedure for five 1, 4-dihydropyridines calcium channel antagonists from human plasma using experimental design. Talanta, 67(5), 933–941.CrossRefGoogle Scholar
  22. Bruns, R. E., Scarminio I. S., & de Barros Neto, B. (2006). Statistical design-chemometrics (vol. 25): ElsevierGoogle Scholar
  23. Burande, R. R., Kumbhar, B. K., Ghosh, P. K., & Jayas, D. S. (2008). Optimization of fluidized bed drying process of green peas using response surface methodology. Drying Technology, 26(7), 920–930.CrossRefGoogle Scholar
  24. Cao, H., Zhang, M., Mujumdar, A. S., Du, W. H., & Sun, J. C. (2006). Optimization of osmotic dehydration of kiwifruit. Drying Technology, 24(1), 89–94.CrossRefGoogle Scholar
  25. Cheison, S. C., Wang, Z., & Xu, S.-Y. (2007). Use of response surface methodology to optimise the hydrolysis of whey protein isolate in a tangential flow filter membrane reactor. Journal of Food Engineering, 80(4), 1134–1145.CrossRefGoogle Scholar
  26. Chen, K.-N., Chen, M.-J., & Lin, C.-W. (2006). Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification (R1). Journal of Food Engineering, 76(3), 313–320.CrossRefGoogle Scholar
  27. Chen, K. N., Chen, M. J., Liu, J. R., Lin, C. W., & Chiu, H. Y. (2005). Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. Journal of Food Science, 70(5), M260–M266.CrossRefGoogle Scholar
  28. Chen, Q., He, G., & Ali, M. A. (2002). Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme and Microbial Technology, 30(5), 667–672.CrossRefGoogle Scholar
  29. Chen, X., Xu, F., Qin, W., Ma, L., & Zheng, Y. (2012). Optimization of enzymatic clarification of green asparagus juice using response surface methodology. Journal of Food Science, 77(6), C665–C670.CrossRefGoogle Scholar
  30. Cladera-Olivera, F., Caron, G., & Brandelli, A. (2004). Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochemical Engineering Journal, 21(1), 53–58.CrossRefGoogle Scholar
  31. Coman, G., & Bahrim, G. (2011). Optimization of xylanase production by Streptomyces sp. P12-137 using response surface methodology and central composite design. Annals of Microbiology, 61(4), 773–779.CrossRefGoogle Scholar
  32. Cubas, C., Lobo, M. G., & González, M. (2008). Optimization of the extraction of chlorophylls in green beans (Phaseolus vulgaris L.) by N, N-dimethylformamide using response surface methodology. Journal of Food Composition and Analysis, 21(2), 125–133.CrossRefGoogle Scholar
  33. Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., Babu, S. V., Senthilkumar, S., & Sangiliyandi, G. (2008). Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 99(17), 8170–8174.CrossRefGoogle Scholar
  34. Dutta, J. R., Dutta, P. K., & Banerjee, R. (2004). Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochemistry, 39(12), 2193–2198.CrossRefGoogle Scholar
  35. Erbay, Z., & Icier, F. (2009). Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, 91(4), 533–541.CrossRefGoogle Scholar
  36. Eren, İ., & Kaymak-Ertekin, F. (2007). Optimization of osmotic dehydration of potato using response surface methodology. Journal of Food Engineering, 79(1), 344–352.CrossRefGoogle Scholar
  37. Esmaeili, M., Yolmeh, M., Shakerardakani, A., & Golivari, H. (2015). A central composite design for the optimizing lipase and protease production from Bacillus subtilis PTCC 1720. Biocatalysis and Agricultural Biotechnology, 4(3), 349–354.CrossRefGoogle Scholar
  38. Fan, G., Han, Y., Gu, Z., & Chen, D. (2008). Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). LWT-Food Science and Technology, 41(1), 155–160.CrossRefGoogle Scholar
  39. Felberg, I., Deliza, R., Farah, A., Calado, E., & Donangelo, C. (2010). Formulation of a soy–coffee beverage by response surface methodology and internal preference mapping. Journal of Sensory Studies, 25(s1), 226–242.Google Scholar
  40. Fernández, C., Dolores Alvarez, M., & Canet, W. (2006). The effect of low-temperature blanching on the quality of fresh and frozen/thawed mashed potatoes. International journal of food science & technology, 41(5), 577–595.CrossRefGoogle Scholar
  41. Francis, F., Sabu, A., Nampoothiri, K. M., Ramachandran, S., Ghosh, S., Szakacs, G., & Pandey, A. (2003). Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal, 15(2), 107–115.CrossRefGoogle Scholar
  42. Gallagher, E., O’Brien, C., Scannell, A., & Arendt, E. (2003). Use of response surface methodology to produce functional short dough biscuits. Journal of Food Engineering, 56(2), 269–271.CrossRefGoogle Scholar
  43. Gan, C.-Y., & Latiff, A. A. (2011). Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chemistry, 124(3), 1277–1283.CrossRefGoogle Scholar
  44. Gan, C.-Y., Manaf, N. H. A., & Latiff, A. A. (2010). Optimization of alcohol insoluble polysaccharides (AIPS) extraction from the Parkia speciosa pod using response surface methodology (RSM). Carbohydrate Polymers, 79(4), 825–831.CrossRefGoogle Scholar
  45. Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K. M., Sukumaran, R. K., & Pandey, A. (2008). Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology, 99(11), 4597–4602.CrossRefGoogle Scholar
  46. Gao, L., & Mazza, G. (1996). Extraction of anthocyanin pigments from purple sunflower hulls. Journal of Food Science, 61(3), 600–603.CrossRefGoogle Scholar
  47. Garrote, R. L., Silva, E. R., Bertone, R. A., & Roa, R. D. (2004). Predicting the end point of a blanching process. LWT-Food Science and Technology, 37(3), 309–315.CrossRefGoogle Scholar
  48. Ge, Y., Ni, Y., Yan, H., Chen, Y., & Cai, T. (2002). Optimization of the supercritical fluid extraction of natural vitamin E from wheat germ using response surface methodology. Journal of Food Science, 67(1), 239–243.CrossRefGoogle Scholar
  49. Gfrerer, M., & Lankmayr, E. (2005). Screening, optimization and validation of microwave-assisted extraction for the determination of persistent organochlorine pesticides. Analytica Chimica Acta, 533(2), 203–211.CrossRefGoogle Scholar
  50. Gharibzahedi, S. M. T., Mousavi, S. M., Hamedi, M., & Ghasemlou, M. (2012). Response surface modeling for optimization of formulation variables and physical stability assessment of walnut oil-in-water beverage emulsions. Food Hydrocolloids, 26(1), 293–301.CrossRefGoogle Scholar
  51. Ghorbannezhad, P., Bay, A., Yolmeh, M., Yadollahi, R., & Moghadam, J. Y. (2016). Optimization of coagulation–flocculation process for medium density fiberboard (MDF) wastewater through response surface methodology. Desalination and Water Treatment, 1–16. doi: 10.1080/19443994.2016.1170636.
  52. Gong, Y., Hou, Z., Gao, Y., Xue, Y., Liu, X., & Liu, G. (2012). Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology. Food and Bioproducts Processing, 90(1), 9–16.CrossRefGoogle Scholar
  53. Guo, W.-Q., Ren, N.-Q., Wang, X.-J., Xiang, W.-S., Ding, J., You, Y., & Liu, B.-F. (2009). Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresource Technology, 100(3), 1192–1196.CrossRefGoogle Scholar
  54. Han, Q.-H., Yin, L.-J., Li, S.-J., Yang, B.-N., & Ma, J.-W. (2010). Optimization of process parameters for microwave vacuum drying of apple slices using response surface method. Drying Technology, 28(4), 523–532.CrossRefGoogle Scholar
  55. He, Y.-Q., & Tan, T.-W. (2006). Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. 99-125. Journal of Molecular Catalysis B: Enzymatic, 43(1), 9–14.CrossRefGoogle Scholar
  56. Huang, Y.-B., Tsai, Y.-H., Lee, S.-H., Chang, J.-S., & Wu, P.-C. (2005). Optimization of pH-independent release of nicardipine hydrochloride extended-release matrix tablets using response surface methodology. International Journal of Pharmaceutics, 289(1), 87–95.CrossRefGoogle Scholar
  57. Huynh, T. V., Caffin, N., Dykes, G. A., & Bhandari, B. (2008). Optimization of the microencapsulation of lemon myrtle oil using response surface methodology. Drying Technology, 26(3), 357–368.CrossRefGoogle Scholar
  58. Ismail, N., & Revathi, R. (2006). Studies on the effects of blanching time, evaporation time, temperature and hydrocolloid on physical properties of chili (Capsicum annum var kulai) puree. LWT-Food Science and Technology, 39(1), 91–97.CrossRefGoogle Scholar
  59. Jackson, J. C., Bourne, M. C., & Barnard, J. (1996). Optimization of blanching for crispness of banana chips using response surface methodology. Journal of Food Science, 61(1), 165–166.CrossRefGoogle Scholar
  60. Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835.CrossRefGoogle Scholar
  61. Juntachote, T., Berghofer, E., Bauer, F., & Siebenhandl, S. (2006). The application of response surface methodology to the production of phenolic extracts of lemon grass, galangal, holy basil and rosemary. International journal of food science & technology, 41(2), 121–133.CrossRefGoogle Scholar
  62. Karazhiyan, H., Razavi, S. M., & Phillips, G. O. (2011). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocolloids, 25(5), 915–920.CrossRefGoogle Scholar
  63. Kasankala, L. M., Xue, Y., Weilong, Y., Hong, S. D., & He, Q. (2007). Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology. Bioresource Technology, 98(17), 3338–3343.CrossRefGoogle Scholar
  64. Katapodis, P., Christakopoulou, V., Kekos, D., & Christakopoulos, P. (2007). Optimization of xylanase production by Chaetomium thermophilum in wheat straw using response surface methodology. Biochemical Engineering Journal, 35(2), 136–141.CrossRefGoogle Scholar
  65. Kaur, D., Wani, A. A., Oberoi, D., & Sogi, D. (2008). Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chemistry, 108(2), 711–718.CrossRefGoogle Scholar
  66. Kaur, S., Sarkar, B., Sharma, H., & Singh, C. (2009). Optimization of enzymatic hydrolysis pretreatment conditions for enhanced juice recovery from guava fruit using response surface methodology. Food and Bioprocess Technology, 2(1), 96–100.CrossRefGoogle Scholar
  67. Kaushik, R., Saran, S., Isar, J., & Saxena, R. (2006). Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. Journal of Molecular Catalysis B: Enzymatic, 40(3), 121–126.CrossRefGoogle Scholar
  68. Kha, T. C., Nguyen, M. H., Roach, P. D., & Stathopoulos, C. E. (2014). Microencapsulation of gac oil by spray drying: optimization of wall material concentration and oil load using response surface methodology. Drying Technology, 32(4), 385–397.CrossRefGoogle Scholar
  69. Khazaei, K. M., Jafari, S., Ghorbani, M., Kakhki, A. H., & Sarfarazi, M. (2016). Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods, 9(7), 1993–2001.Google Scholar
  70. Kim, M.-S., Kim, J.-S., You, Y.-H., Park, H. J., Lee, S., Park, J.-S., & Hwang, S.-J. (2007). Development and optimization of a novel oral controlled delivery system for tamsulosin hydrochloride using response surface methodology. International Journal of Pharmaceutics, 341(1), 97–104.CrossRefGoogle Scholar
  71. Ko, J., Park, H. J., Park, Y., Hwang, S., & Park, J. (2003). Chitosan microparticle preparation for controlled drug release by response surface methodology. Journal of Microencapsulation, 20(6), 791–797.CrossRefGoogle Scholar
  72. Kumar, D., Prasad, S., & Murthy, G. S. (2014). Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology. Journal of Food Science and Technology, 51(2), 221–232.CrossRefGoogle Scholar
  73. Kunamneni, A., & Singh, S. (2005). Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochemical Engineering Journal, 27(2), 179–190.CrossRefGoogle Scholar
  74. Kurozawa, L., Park, K., & Hubinger, M. (2008). Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology. Journal of Food Science, 73(5), C405–C412.CrossRefGoogle Scholar
  75. Lee, W., Yusof, S., Hamid, N. S. A., & Baharin, B. S. (2006). Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of Food Engineering, 73(1), 55–63.CrossRefGoogle Scholar
  76. Li, X., Liu, Z., & Chi, Z. (2008). Production of phytase by a marine yeast Kodamaea ohmeri BG3 in an oats medium: optimization by response surface methodology. Bioresource Technology, 99(14), 6386–6390.CrossRefGoogle Scholar
  77. Liew, S. L., Ariff, A., Raha, A., & Ho, Y. (2005). Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology. International Journal of Food Microbiology, 102(2), 137–142.CrossRefGoogle Scholar
  78. Lin, Y.-P., Lee, T.-Y., Tsen, J.-H., & King, V. A.-E. (2007). Dehydration of yam slices using FIR-assisted freeze drying. Journal of Food Engineering, 79(4), 1295–1301.CrossRefGoogle Scholar
  79. Liu, J.-Z., Weng, L.-P., Zhang, Q.-L., Xu, H., & Ji, L.-N. (2003). Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology. World Journal of Microbiology and Biotechnology, 19(3), 317–323.CrossRefGoogle Scholar
  80. Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nyström, Å., Pettersen, J., & Bergman, R. (1998). Experimental design and optimization. Chemometrics and Intelligent Laboratory Systems, 42(1), 3–40.CrossRefGoogle Scholar
  81. Madamba, P. S. (2002). The response surface methodology: an application to optimize dehydration operations of selected agricultural crops. LWT-Food Science and Technology, 35(7), 584–592.CrossRefGoogle Scholar
  82. Maran, J. P., & Manikandan, S. (2012). Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes and Pigments, 95(3), 465–472.CrossRefGoogle Scholar
  83. Martinez, B., Rincón, F., Ibáñez, M., & BELLÁN, P. (2004). Improving the nutritive value of homogenized infant foods using response surface methodology. Journal of Food Science, 69(1), SNQ38–SNQ43.CrossRefGoogle Scholar
  84. Masmoudi, M., Besbes, S., Chaabouni, M., Robert, C., Paquot, M., Blecker, C., & Attia, H. (2008). Optimization of pectin extraction from lemon by-product with acidified date juice using response surface methodology. Carbohydrate Polymers, 74(2), 185–192.CrossRefGoogle Scholar
  85. McCarthy, D., Gallagher, E., Gormley, T., Schober, T., & Arendt, E. (2005). Application of response surface methodology in the development of gluten-free bread. Cereal Chemistry, 82(5), 609–615.CrossRefGoogle Scholar
  86. Mestdagh, F., De Wilde, T., Fraselle, S., Govaert, Y., Ooghe, W., Degroodt, J.-M., & De Meulenaer, B. (2008). Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT-Food Science and Technology, 41(9), 1648–1654.CrossRefGoogle Scholar
  87. Mirmoghtadaie, L., Ensafi, A. A., Kadivar, M., & Norouzi, P. (2013). Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-pencil graphite electrode using response surface methodology. Materials Science and Engineering: C, 33(3), 1753–1758.CrossRefGoogle Scholar
  88. Montgomery, D. C. (2008). Design and analysis of experiments: John Wiley & Sons.Google Scholar
  89. Moulai Mostefa, N., Hadj Sadok, A., Sabri, N., & Hadji, A. (2006). Determination of optimal cream formulation from long-term stability investigation using a surface response modelling. International Journal of Cosmetic Science, 28(3), 211–218.CrossRefGoogle Scholar
  90. Moyo, S., Gashe, B., Collison, E., & Mpuchane, S. (2003). Optimising growth conditions for the pectinolytic activity of Kluyveromyces wickerhamii by using response surface methodology. International Journal of Food Microbiology, 85(1), 87–100.CrossRefGoogle Scholar
  91. Muralidhar, R., Chirumamila, R., Marchant, R., & Nigam, P. (2001). A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal, 9(1), 17–23.CrossRefGoogle Scholar
  92. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments: John Wiley & Sons.Google Scholar
  93. Mylonaki, S., Kiassos, E., Makris, D. P., & Kefalas, P. (2008). Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Analytical and Bioanalytical Chemistry, 392(5), 977–985.CrossRefGoogle Scholar
  94. Neifar, M., ELLOUZE-GHORBEL, R., Kamoun, A., Baklouti, S., Mokni, A., Jaouani, A., & ELLOUZE-CHAABOUNI, S. (2011). Effective clarification of pomegranate juice using laccase treatment optimized by response surface methodology followed by ultrafiltration. Journal of Food Process Engineering, 34(4), 1199–1219.CrossRefGoogle Scholar
  95. Nikerel, İ. E., Öner, E., Kirdar, B., & Yildirim, R. (2006). Optimization of medium composition for biomass production of recombinant Escherichia coli cells using response surface methodology. Biochemical Engineering Journal, 32(1), 1–6.CrossRefGoogle Scholar
  96. Novotná, K., Havliš, J., & Havel, J. (2005). Optimisation of high performance liquid chromatography separation of neuroprotective peptides: fractional experimental designs combined with artificial neural networks. Journal of Chromatography A, 1096(1), 50–57.CrossRefGoogle Scholar
  97. Nur’Aliaa, A., Siti Mazlina, M., Taip, F. S., & Liew Abdullah, A. (2010). Response surface optimization for clarification of white pitaya juice using a commercial enzyme. Journal of Food Process Engineering, 33(2), 333–347.CrossRefGoogle Scholar
  98. Ozdemir, M., Ozen, B. F., Dock, L. L., & Floros, J. D. (2008). Optimization of osmotic dehydration of diced green peppers by response surface methodology. LWT-Food Science and Technology, 41(10), 2044–2050.CrossRefGoogle Scholar
  99. Pappa, I., Bloukas, J., & Arvanitoyannis, I. (2000). Optimization of salt, olive oil and pectin level for low-fat frankfurters produced by replacing pork backfat with olive oil. Meat Science, 56(1), 81–88.CrossRefGoogle Scholar
  100. Peričin, D., Radulović-Popović, L., Vaštag, Ž., Mađarev-Popović, S., & Trivić, S. (2009). Enzymatic hydrolysis of protein isolate from hull-less pumpkin oil cake: application of response surface methodology. Food Chemistry, 115(2), 753–757.CrossRefGoogle Scholar
  101. Pompeu, D., Silva, E., & Rogez, H. (2009). Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using response surface methodology. Bioresource Technology, 100(23), 6076–6082.CrossRefGoogle Scholar
  102. Puri, S., Beg, Q. K., & Gupta, R. (2002). Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Current Microbiology, 44(4), 286–290.CrossRefGoogle Scholar
  103. Quintero-Ramos, A., Bourne, M., Barnard, J., & ANZALDÚA-MORALES, A. (1998). Optimization of low temperature blanching of frozen jalapeño pepper (Capsicum annuum) using response surface methodology. Journal of Food Science, 63(3), 519–522.CrossRefGoogle Scholar
  104. Rai, P., Majumdar, G., Dasgupta, S., & De, S. (2004). Optimizing pectinase usage in pretreatment of mosambi juice for clarification by response surface methodology. Journal of Food Engineering, 64(3), 397–403.CrossRefGoogle Scholar
  105. Ratnam, B., Rao, M. N., Rao, M. D., Rao, S. S., & Ayyanna, C. (2003). Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World Journal of Microbiology and Biotechnology, 19(5), 523–526.CrossRefGoogle Scholar
  106. Reyes-Moreno, C., Parra-Inzunza, M. A., Milán-Carrillo, J., & Zazueta-Niebla, J. A. (2002). A response surface methodology approach to optimise pretreatments to prevent enzymatic browning in potato (Solanum tuberosum L) cubes. Journal of the Science of Food and Agriculture, 82(1), 69–79.CrossRefGoogle Scholar
  107. Rezzoug, S.-A., Boutekedjiret, C., & Allaf, K. (2005). Optimization of operating conditions of rosemary essential oil extraction by a fast controlled pressure drop process using response surface methodology. Journal of Food Engineering, 71(1), 9–17.CrossRefGoogle Scholar
  108. Rodrigues, L., Teixeira, J., Oliveira, R., & Van Der Mei, H. C. (2006). Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochemistry, 41(1), 1–10.CrossRefGoogle Scholar
  109. Rodrigues, S., Pinto, G. A., & Fernandes, F. A. (2008). Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrasonics Sonochemistry, 15(1), 95–100.CrossRefGoogle Scholar
  110. Rodríguez-Nogales, J. M., Ortega, N., Perez-Mateos, M., & Busto, M. D. (2007). Experimental design and response surface modeling applied for the optimisation of pectin hydrolysis by enzymes from A. niger CECT 2088. Food Chemistry, 101(2), 634–642.CrossRefGoogle Scholar
  111. Rosa, P. A., Azevedo, A. M., & Aires-Barros, M. R. (2007). Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies. Journal of Chromatography A, 1141(1), 50–60.CrossRefGoogle Scholar
  112. Saccani, G., Tanzi, E., Mallozzi, S., & Cavalli, S. (2005). Determination of niacin in fresh and dry cured pork products by ion chromatography: experimental design approach for the optimisation of nicotinic acid separation. Food Chemistry, 92(2), 373–379.CrossRefGoogle Scholar
  113. Salimi, A., Maghsoudlou, Y., Jafari, S. M., Mahoonak, A. S., Kashaninejad, M., & Ziaiifar, A. M. (2015). Preparation of lycopene emulsions by whey protein concentrate and maltodextrin and optimization by response surface methodology. Journal of Dispersion Science and Technology, 36(2), 274–283.CrossRefGoogle Scholar
  114. Sanchez, H., Osella, C., & De La Torre, M. (2004). Use of response surface methodology to optimize gluten-free bread fortified with soy flour and dry milk. Food Science and Technology International, 10(1), 5–9.CrossRefGoogle Scholar
  115. Sarfarazi, M., Jafari, S. M., & Rajabzadeh, G. (2015). Extraction optimization of saffron nutraceuticals through response surface methodology. Food Analytical Methods, 8(9), 2273–2285.CrossRefGoogle Scholar
  116. Schwabe, C., & Büllesbach, E. (2013). Relaxin and the fine structure of proteins: Springer Science & Business Media.Google Scholar
  117. Servais, A. C., Fillet, M., Chiap, P., Abushoffa, A. M., Hubert, P., & Crommen, J. (2002). Optimization of the separation of β-blockers by ion-pair capillary electrophoresis in non-aqueous media using univariate and multivariate approaches. Journal of Separation Science, 25(15–17), 1087–1095.CrossRefGoogle Scholar
  118. Shahraki, M. H., Jafari, S. M., Mashkour, M., & Esmaeilzadeh, E. (2013). Optimization of closed-cycle fluidized bed drying of sesame seeds using response surface methodology and genetic algorithms. International Journal of Food Engineering, 10(1), 167–181.Google Scholar
  119. Sin, H., Yusof, S., Hamid, N. S. A., & Rahman, R. A. (2006a). Optimization of hot water extraction for sapodilla juice using response surface methodology. Journal of Food Engineering, 74(3), 352–358.CrossRefGoogle Scholar
  120. Sin, H. N., Yusof, S., Hamid, N. S. A., & Rahman, R. A. (2006b). Optimization of enzymatic clarification of sapodilla juice using response surface methodology. Journal of Food Engineering, 73(4), 313–319.CrossRefGoogle Scholar
  121. Singh, B., Chakkal, S. K., & Ahuja, N. (2006). Formulation and optimization of controlled release mucoadhesive tablets of atenolol using response surface methodology. AAPS PharmSciTech, 7(1), E19–E28.CrossRefGoogle Scholar
  122. Singh, B., Panesar, P. S., Gupta, A., & Kennedy, J. F. (2007). Optimisation of osmotic dehydration of carrot cubes in sucrose-salt solutions using response surface methodology. European Food Research and Technology, 225(2), 157–165.CrossRefGoogle Scholar
  123. Singh, S., Raina, C. S., Bawa, A. S., & Saxena, D. C. (2004). Sweet potato-based pasta product: optimization of ingredient levels using response surface methodology. International journal of food science & technology, 39(2), 191–200.CrossRefGoogle Scholar
  124. Sinha, K., Chowdhury, S., Saha, P. D., & Datta, S. (2013). Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response surface methodology (RSM) and artificial neural network (ANN). Industrial Crops and Products, 41, 165–171.CrossRefGoogle Scholar
  125. Sinha, K., Saha, P. D., & Datta, S. (2012). Extraction of natural dye from petals of flame of forest (Butea monosperma) flower: process optimization using response surface methodology (RSM). Dyes and Pigments, 94(2), 212–216.CrossRefGoogle Scholar
  126. Souza, A. S., dos Santos, W. N., & Ferreira, S. L. (2005). Application of Box–Behnken design in the optimisation of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 60(5), 737–742.CrossRefGoogle Scholar
  127. Spanilá, M., Pazourek, J., Farková, M., & Havel, J. (2005). Optimization of solid-phase extraction using artificial neural networks in combination with experimental design for determination of resveratrol by capillary zone electrophoresis in wines. Journal of Chromatography A, 1084(1), 180–185.CrossRefGoogle Scholar
  128. Stamatopoulos, K., Katsoyannos, E., Chatzilazarou, A., & Konteles, S. J. (2012). Improvement of oleuropein extractability by optimising steam blanching process as pre-treatment of olive leaf extraction via response surface methodology. Food Chemistry, 133(2), 344–351.CrossRefGoogle Scholar
  129. Suh, M.-H., Yoo, S.-H., & Lee, H. G. (2007). Antioxidative activity and structural stability of microencapsulated γ-oryzanol in heat-treated lards. Food Chemistry, 100(3), 1065–1070.CrossRefGoogle Scholar
  130. Sunitha, K., Lee, J.-K., & Oh, T.-K. (1999). Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess Engineering, 21(6), 477–481.Google Scholar
  131. Suresh Babu, C. V., Chung, B. C., & Yoo, Y. S. (2004). Experimental design to investigate factors affecting capillary zone electrophoresis. Analytical Letters, 37(12), 2485–2499.CrossRefGoogle Scholar
  132. Tabaraki, R., & Nateghi, A. (2011). Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrasonics Sonochemistry, 18(6), 1279–1286.CrossRefGoogle Scholar
  133. Tang, X.-J., He, G.-Q., Chen, Q.-H., Zhang, X.-Y., & Ali, M. A. (2004). Medium optimization for the production of thermal stable β-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Bioresource Technology, 93(2), 175–181.CrossRefGoogle Scholar
  134. Tanyildizi, M. S., Özer, D., & Elibol, M. (2005). Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochemistry, 40(7), 2291–2296.CrossRefGoogle Scholar
  135. Thakur, S., & Saxena, D. (2000). Formulation of extruded snack food (gum based cereal–pulse blend): optimization of ingredients levels using response surface methodology. LWT-Food Science and Technology, 33(5), 354–361.CrossRefGoogle Scholar
  136. Tonon, R. V., Grosso, C. R., & Hubinger, M. D. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 44(1), 282–289.CrossRefGoogle Scholar
  137. Tran, A. T., Hyne, R. V., Pablo, F., Day, W. R., & Doble, P. (2007). Optimisation of the separation of herbicides by linear gradient high performance liquid chromatography utilising artificial neural networks. Talanta, 71(3), 1268–1275.CrossRefGoogle Scholar
  138. Vohra, A., & Satyanarayana, T. (2002). Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochemistry, 37(9), 999–1004.CrossRefGoogle Scholar
  139. Wang, H., Liu, Y., Wei, S., & Yan, Z. (2012). Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn. Food Chemistry, 132(1), 582–587.CrossRefGoogle Scholar
  140. Wang, L., Yang, B., Du, X., Yang, Y., & Liu, J. (2008). Optimization of conditions for extraction of acid-soluble collagen from grass carp (Ctenopharyngodon idella) by response surface methodology. Innovative Food Science & Emerging Technologies, 9(4), 604–607.CrossRefGoogle Scholar
  141. Wijngaard, H. H., & Brunton, N. (2010). The optimisation of solid–liquid extraction of antioxidants from apple pomace by response surface methodology. Journal of Food Engineering, 96(1), 134–140.CrossRefGoogle Scholar
  142. Xie, J.-H., Shen, M.-Y., Xie, M.-Y., Nie, S.-P., Chen, Y., Li, C., & Wang, Y.-X. (2012). Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides. Carbohydrate Polymers, 89(1), 177–184.CrossRefGoogle Scholar
  143. Xie, J. H., Xie, M. Y., Shen, M. Y., Nie, S. P., Li, C., & Wang, Y. X. (2010). Optimisation of microwave-assisted extraction of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja using response surface methodology. Journal of the Science of Food and Agriculture, 90(8), 1353–1360.CrossRefGoogle Scholar
  144. Xiong, C., Jinhua, W., & Dongsheng, L. (2007). Optimization of solid-state medium for the production of inulinase by Kluyveromyces S120 using response surface methodology. Biochemical Engineering Journal, 34(2), 179–184.CrossRefGoogle Scholar
  145. Yang, L., Jiang, J. G., Li, W. F., Chen, J., Wang, D. Y., & Zhu, L. (2009). Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. Journal of Separation Science, 32(9), 1437–1444.CrossRefGoogle Scholar
  146. Yolmeh, M., Najafi, M. B. H., & Farhoosh, R. (2014). Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chemistry, 155, 319–324.CrossRefGoogle Scholar
  147. Yolmeh, M., & Najafzadeh, M. (2014). Optimisation and modelling green bean’s ultrasound blanching. International journal of food science & technology, 49(12), 2678–2684.CrossRefGoogle Scholar
  148. Yoshida, T., Tsubaki, S., Teramoto, Y., & Azuma, J. I. (2010). Optimization of microwave-assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology. Bioresource Technology, 101(20), 7820–7826.CrossRefGoogle Scholar
  149. Zhang, Q., Qu, Y., Zhou, J., Zhang, X., Zhou, H., Ma, Q., & Li, X. (2011). Optimization of 2,3-dihydroxybiphenyl 1,2-dioxygenase expression and its application for biosensor. Bioresource Technology, 102, 10553–10560.CrossRefGoogle Scholar
  150. Zhong, K., & Wang, Q. (2010). Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydrate Polymers, 80(1), 19–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Food Science and TechnologyUniversity of Agricultural Sciences and Natural ResourcesGorganIran

Personalised recommendations