Food and Bioprocess Technology

, Volume 10, Issue 4, pp 699–709 | Cite as

Effect of Vacuum Impregnation Combined with Calcium Lactate on the Firmness and Polysaccharide Morphology of Kyoho Grapes (Vitis vinifera x V. labrusca)

  • Jiaqi Mao
  • Lifen Zhang
  • Fusheng Chen
  • Shaojuan Lai
  • Bao Yang
  • Hongshun Yang
Original Paper


The effects of vacuum impregnation (VI) with 2% calcium lactate treatment on the VI properties (obtained from hydrodynamic mechanism and deformation–relaxation phenomena models), firmness, and pectin of Kyoho grapes were investigated. Fruit pectin was analysed by atomic force microscopy (AFM). VI was applied for 10–35 min at 25–45 °C and 5 kPa. The maximum values of effective porosity, εe (0.606%), and volume fraction, X (0.588%), occurred at 35 °C when the VI time was 15 min. No change was observed in the volumetric deformation (γ ≈ 0) of the grapes after the impregnation. The firmness significantly increased at 35 °C VI (from 12.93 to 14.47 N). According to the AFM results, calcium mainly inhibited the degradation of chelate-soluble pectin and sodium carbonate-soluble pectin short branches during the VI. Under the studied conditions, the validity of VI to incorporate calcium into fruit to improve the quality of grapes was verified, and a final corresponding product was obtained by VI.


Vacuum impregnation Grape Firmness Calcium Pectin Nanostructure Atomic force microscopy (AFM) 



This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 1 (R-143-000-583-112) and a start-up grant from the National University of Singapore (R-143-000-561-133). Projects 31371851, 31071617, 31471605, and 31200801 by NSFC, Natural Science Foundation of Jiangsu Province (BK20141220), Applied Basic Research Project (Agricultural) Suzhou Science and Technology Planning Programme (SYN201522), and an industry grant (R-143-000-616-597) also contributed to this work.


  1. Aguayo, E., Escalona, V. H., & Artés, F. (2008). Effect of hot water treatment and various calcium salts on quality of fresh-cut ‘Amarillo’ melon. Postharvest Biology and Technology, 47(3), 397–406.CrossRefGoogle Scholar
  2. Aghdam, M. S., Hassanpouraghdam, M. B., Paliyath, G., & Farmani, B. (2012). The language of calcium in postharvest life of fruits, vegetables and flowers. Scientia Horticulturae, 144(3), 102–115.CrossRefGoogle Scholar
  3. Aghdam, M. S., Dokhanieh, A. Y., Hassanpour, H., & Fard, J. R. (2013). Enhancement of antioxidant capacity of cornelian cherry (Cornus mas) fruit by postharvest calcium treatment. Scientia Horticulturae, 161(2), 160–164.CrossRefGoogle Scholar
  4. Almela, C., Castelló, M., Tarrazó, J., & Ortolá, M. (2015). Influence of calcium lactate and modified atmosphere on respiration rate, optical and mechanical properties of sliced persimmon. Food Science and Technology International, 2(1), 55–63.CrossRefGoogle Scholar
  5. Betoret, E., Betoret, N., Castagnini, J. M., Rocculi, P., Rosa, M. D., & Fito, P. (2015). Analysis by non-linear irreversible thermodynamics of compositional and structural changes occurred during air drying of vacuum impregnated apple (cv. granny smith): calcium and trehalose effects. Journal of Food Engineering, 147, 95–101.CrossRefGoogle Scholar
  6. Chafer, M., Gonzalez-Martinez, C., Chiralt, A., & Fito, P. (2003). Microstructure and vacuum impregnation response of citrus peels. Food Research International, 36(1), 35–41.CrossRefGoogle Scholar
  7. Chen, F., Liu, H., Yang, H., Lai, S., Cheng, X., Xin, Y., Yang, B., Hou, H., Yao, Y., Zhang, S., Bu, G., & Deng, Y. (2011). Quality attributes and cell wall properties of strawberry (Fragaria annanassa Duch.) under calcium chloride treatment. Food Chemistry, 126(2), 450–459.CrossRefGoogle Scholar
  8. Chen, Y., Chen, F., Lai, S., Yang, H., Liu, H., Liu, K., Bu, G., & Deng, Y. (2013). In vitro study of the interaction between pectinase and chelate-soluble pectin in postharvest apricot fruits. European Food Research and Technology, 237(6), 987–993.CrossRefGoogle Scholar
  9. Chong, J., Lai, S., & Yang, H. (2015). Chitosan combined with calcium chloride impacts fresh-cut honeydew melon by stabilising nanostructures of sodium-carbonate-soluble pectin. Food Control, 53, 195–205.CrossRefGoogle Scholar
  10. Feng, X., Bansal, N., & Yang, H. (2016a). Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage. Food Chemistry, 200, 283–292.CrossRefGoogle Scholar
  11. Feng, X., Ng, V. K., Mikš-Krajnik, M., & Yang, H. (2016b). Effects of fish gelatin and tea polyphenol coating on the spoilage and degradation of myofibril in fish fillet during cold storage. Food and Bioprocess Technology. doi: 10.1007/s11947-016-1798-7.Google Scholar
  12. Feng, X., Fu, C., & Yang, H. (2017). Gelatin addition improves nutrient retention, texture and mass transfer of fish balls without altering their nanostructure during boiling. LWT-Food Science and Technology, 77, 142–151.CrossRefGoogle Scholar
  13. Fito, P., Andrés, A., Chiralt, A., & Pardo, P. (1996). Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems. Journal of Food Engineering, 27(3), 229–240.CrossRefGoogle Scholar
  14. Fito, P., Chiralt, A., Betoret, N., Gras, M., Cháfer, M., Martínez-Monzó, J., Andrés, A., & Vidal, D. (2001a). Vacuum impregnation and osmotic dehydration in matrix engineering: application in functional fresh food development. Journal of Food Engineering, 49(2–3), 175–183.CrossRefGoogle Scholar
  15. Fito, P., Chiralt, A., Barat, J. M., Andrés, A., Martínez-Monzó, J., & Martínez-Navarrete, N. (2001b). Vacuum impregnation for development of new dehydrated products. Journal of Food Engineering, 49(4), 297–302.CrossRefGoogle Scholar
  16. Fu, C., Yang, D., Peh, W. Y. E., Lai, S., Feng, X., & Yang, H. (2015a). Structure and antioxidant activities of proanthocyanidins from elephant apple (Dillenia indica Linn.). Journal of Food Science, 80(10), C2191–C2199.CrossRefGoogle Scholar
  17. Fu, C., Yang, X., Lai, S., Liu, C., Huang, S., & Yang, H. (2015b). Structure, antioxidant and α-amylase inhibitory activities of longan pericarp proanthocyanidins. Journal of Functional Foods, 14, 23–32.CrossRefGoogle Scholar
  18. Gras, M., Vidal-Brotóns, N., Betoret, A., Chiralt, & Fito, P. (2002). The response of some vegetables to vacuum impregnation. Innovative Food Science & Emerging Technologies, 3(3), 263–269.CrossRefGoogle Scholar
  19. Gras, M. L., Vidal, D., Betoret, N., Chiralt, A., & Fito, P. (2003). Calcium fortification of vegetables by vacuum impregnation: interactions with cellular matrix. Journal of Food Engineering, 56(2–3), 279–284.CrossRefGoogle Scholar
  20. Guillemin, A., Guillon, F., Degraeve, P., Rondeau, C., Devaux, M. F., Huber, F., et al. (2008). Firming of fruit tissues by vacuum-infusion of pectin methylesterase: visualisation of enzyme action. Food Chemistry, 109(2), 368–378.CrossRefGoogle Scholar
  21. Khaliq, G., Mohamed, M. T. M., Ali, A., Ding, P., & Ghazali, H. M. (2015). Effect of gum Arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Scientia Horticulturae, 190, 187–194.CrossRefGoogle Scholar
  22. Kirby, A. R., Macdougall, A. J., & Morris, V. J. (2008). Atomic force microscopy of tomato and sugar beet pectin molecules. Carbohydrate Polymers, 71(4), 640–647.CrossRefGoogle Scholar
  23. Kou, X. H., Guo, W. L., Guo, R. Z., Li, X. Y., & Xue, Z. H. (2014). Effects of chitosan, calcium chloride, and pullulan coating treatments on antioxidant activity in pear cv. “huang guan” during storage. Food and Bioprocess Technology, 7(3), 671–681.CrossRefGoogle Scholar
  24. Krasaekoopt, W., & Suthanwong, B. (2008). Vacuum impregnation of probiotics in fruit pieces and their survival during refrigerated storage. Kasetsart Journal -Natural Science, 42(4), 723–731.Google Scholar
  25. Lara, I., García, P., & Vendrell, M. (2004). Modifications in cell wall composition after cold storage of calcium-treated strawberry (Fragaria × ananassa Duch.) fruit. Postharvest Biology and Technology, 34, 331–339.CrossRefGoogle Scholar
  26. Laurindo, J. B., Stringari, G. B., Paes, S. S., & Carciofi, B. A. M. (2007). Experimental determination of the dynamics of vacuum impregnation of apples. Journal of Food Science, 72(8), E470–E475.CrossRefGoogle Scholar
  27. Lai, S., Chen, F., Zhang, L., Yang, H., Deng, Y., & Yang, B. (2013). Nanostructural difference of water-soluble pectin and chelate-soluble pectin among ripening stages and cultivars of Chinese cherry. Natural Product Research, 27(4–5), 379–385.CrossRefGoogle Scholar
  28. Li, M., Chen, F., Yang, B., Lai, S., Yang, H., Liu, K., Bu, G., & Deng, Y. (2015). Preparation of organic tofu using organic compatible magnesium chloride incorporated with polysaccharide coagulants. Food Chemistry, 167, 168–174.CrossRefGoogle Scholar
  29. Liu, H., Chen, F., Yang, H., Yao, Y., Gong, X., Xin, Y., & Ding, C. (2009). Effect of calcium treatment on nanostructure of chelate-soluble pectin and physicochemical and textural properties of apricot fruits. Food Research International, 42(8), 1131–1140.CrossRefGoogle Scholar
  30. Liu, Q., Tan, C. S. C., Yang, H., & Wang, S. (2016). Treatment with low-concentration acidic electrolysed water combined with mild heat to sanitise fresh organic broccoli (Brassica oleracea). LWT-Food Science and Technology. doi: 10.1016/j.lwt.2016.11.012.Google Scholar
  31. Luna-Guzmán, I., & Barrett, D. M. (2000). Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupes. Postharvest Biology & Technology, 19(1), 61–72.CrossRefGoogle Scholar
  32. Martín-Diana, A. B., Rico, D., Frías, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: a review. Trends in Food Science & Technology, 18(4), 210–218.CrossRefGoogle Scholar
  33. Martínez-Monzó, J., Martínez-Navarrete, N., Chiralt, A., & Fito, P. (1998). Mechanical and structural changes in apple (Var. Granny Smith) due to vacuum impregnation with cryoprotectants. Journal of Food Science, 63(3), 499–503.CrossRefGoogle Scholar
  34. Mierczyńska, J., Cybulska, J., Pieczywek, P. M., & Zdunek, A. (2015). Effect of storage on rheology of water-soluble, chelate-soluble and diluted alkali-soluble pectin in carrot cell walls. Food and Bioprocess Technology, 8(1), 171–180.CrossRefGoogle Scholar
  35. Pereira, L. M., Carmello-Guerreiro, S. M., Junqueira, V. C. A., Ferrari, C. C., & Hubinger, M. D. (2010). Calcium lactate effect on the shelf life of osmotically dehydrated guavas. Journal of Food Science, 75(9), E612–E619.CrossRefGoogle Scholar
  36. Radziejewska-Kubzdela, E., Biegańska-Marecik, R., & Kidoń, M. (2014). Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products—a review. International Journal of Molecular Sciences, 15(9), 16577–16610.CrossRefGoogle Scholar
  37. Sapers, G. M., Garzarella, L., & Pilizota, V. (1990). Application of browning inhibitors to cut apple and potato by vacuum and pressure infiltration. Journal of Food Science, 55(4), 1049–1053.CrossRefGoogle Scholar
  38. Salvatori, D., Andrés, A., Chiralt, A., & Fito, P. (1998). The response of some properties of fruits to vacuum impregnation. Journal of Food Process Engineering, 21(1), 59–73.CrossRefGoogle Scholar
  39. Souty, M., Reich, M., Breuils, L., Chambroy, Y., Jacquemin, G., & Audergon, J. M. (1995). Effects of postharvest calcium treatments on shelf-life and quality of apricot fruit. Acta Horticulturae, 384, 619–624.CrossRefGoogle Scholar
  40. Valero, D., Zapata, P. J., Guillén, F., Castillo, S., Martínez-Romero, D., & Serrano, M. (2013). Vacuum impregnation of Aloe vera gel maintains postharvest quality of peach and sweet cherry fruit. Acta Horticulturae, 1012, 399–403.CrossRefGoogle Scholar
  41. Wu, Y., Deng, Y., & Li, Y. (2008). Changes in enzyme activities in abscission zone and berry drop of ‘Kyoho’ grapes under high O2 or CO2 atmospheric storage. LWT-Food Science and Technology, 41(1), 175–179.CrossRefGoogle Scholar
  42. Yang, H. (2014). Atomic force microscopy (AFM): principles, modes of operation and limitations. Hauppauge, NY: Nova Science Publishers, Inc..Google Scholar
  43. Yang, H., Lai, S., An, H., & Li, Y. (2006a). Atomic force microscopy study of the ultrastructural changes of chelate-soluble pectin in peaches under controlled atmosphere storage. Postharvest Biology and Technology, 39(1), 75–83.CrossRefGoogle Scholar
  44. Yang, H., Feng, G., An, H., & Li, Y. (2006b). Microstructure changes of sodium carbonate-soluble pectin of peach by AFM during controlled atmosphere storage. Food Chemistry, 94(2), 179–192.CrossRefGoogle Scholar
  45. Yang, H., Wang, H. J., Chen, F. S., Chen, Y. M., Zhang, L. F., & An, H. J. (2012). Effects of ripening stage and cultivar on physicochemical properties and pectin. Carbohydrate Polymers, 89(4), 1180–1188.CrossRefGoogle Scholar
  46. Yu, X., & Yang, H. (2017). Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chemistry, 217, 303–310.CrossRefGoogle Scholar
  47. Yu, X., Ang, H. C., Yang, H., Zheng, C., & Zhang, Y. (2017). Low temperature cleanup combined with magnetic nanoparticle extraction to determine pyrethroids residue in vegetables oils. Food Control, 74, 112–120.CrossRefGoogle Scholar
  48. Yusof, N. L., Rasmusson, A. G., & Galindo, F. G. (2016). Reduction of the nitrate content in baby spinach leaves by vacuum impregnation with sucrose. Food and Bioprocess Technology, 1–9.Google Scholar
  49. Zhang, L., Chen, F., An, H., Yang, H., Sun, X., Guo, X., & Li, L. (2008). Physicochemical properties, firmness, and nanostructures of sodium carbonate-soluble pectin of 2 Chinese cherry cultivars at 2 ripening stages. Journal of Food Science, 73(6), N17–N22.CrossRefGoogle Scholar
  50. Zhang, L., Chen, F., Zhang, P., Lai, S., & Yang, H. (2016). Influence of rice bran wax coating on the physicochemical properties and pectin nanostructure of cherry tomatoes. Food and Bioprocess Technology. doi: 10.1007/s11947-016-1820-0.Google Scholar
  51. Zhang, J., & Yang, H. (2017). Effects of potential organic compatible sanitisers on organic and conventional fresh-cut lettuce (Lactuca sativa Var. Crispa L). Food Control, 72, 20–26.CrossRefGoogle Scholar
  52. Zhao, L., Zhang, Y., & Yang, H. (2017). Efficacy of low concentration neutralised electrolysed water and ultrasound combination for inactivating Escherichia coli ATCC 25922, Pichia pastoris GS115 and Aureobasidium pullulans 2012 on stainless steel coupons. Food Control, 73, 889–899.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
  2. 2.Guangzhou Pulu Medical Technology Co., LtdGuangzhouChina
  3. 3.Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  4. 4.Food Science and Technology Programme, c/o Department of ChemistryNational University of SingaporeSingaporeSingapore
  5. 5.National University of Singapore (Suzhou) Research InstituteSuzhouPeople’s Republic of China

Personalised recommendations