Food and Bioprocess Technology

, Volume 10, Issue 2, pp 349–357 | Cite as

Influence of Rice Bran Wax Coating on the Physicochemical Properties and Pectin Nanostructure of Cherry Tomatoes

  • Lifen Zhang
  • Fusheng Chen
  • Penglong Zhang
  • Shaojuan Lai
  • Hongshun Yang
Original Paper


The effects of rice bran wax coating on the physicochemical properties such as firmness, weight loss, titratable acidity (TA) and soluble solid content (SSC) of cherry tomatoes were studied during cold storage. The chemical and nanostructure properties of chelate-soluble pectin (CSP) were also investigated by high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The results indicated that there was no significant difference of firmness between control (2.48 N) and waxed (2.87 N) fruits at the end of storage (20 days), while the weight loss of waxed fruits (13.54%) was lower than that of control fruits (16.02%). And the degree of esterification (DE) of both fruits decreased after cold storage by FTIR. The structural analysis by atomic force microscopy (AFM) indicated that rice bran wax coating inhibited the degradation of CSP. The CSP molecular widths ranged from 15 to 250 nm, and the vertical heights varied from 0.2 to 2.0 nm. Greater frequency (F q ) of large width and length CSP was found in waxed fruits than in control fruits. The results suggest that rice bran wax coating was an effective way to preserve fresh fruits.


Rice bran wax Fruit coating Chelate-soluble pectin Cherry tomato Edible coating Atomic force microscopy Nanostructure 



The authors acknowledge the financial support by the Singapore Ministry of Education Academic Research Fund Tier 1 (R-143-000-583-112) and the National University of Singapore start-up grant (R-143-000-561-133). Projects 31371851 and 31071617 are supported by NSFC, Natural Science Foundation of Jiangsu Province (BK20141220), and the Applied Basic Research Project (Agricultural) Suzhou Science and Technology Planning Programme (SYN201522), and the Technology Innovation Talent Fund by Henan University of Technology (2014CXRC01) also contributed to this research.


  1. Ali, M. S., Nakano, K., & Maezawa, S. (2004). Combined effect of heat treatment and modified atmosphere packaging on the color development of cherry tomato. Postharvest Biology and Technology, 34(1), 113–116.CrossRefGoogle Scholar
  2. Baldwin, E. A., Nisperos-Carriedo, M. O., & Baker, R. A. (1995). Edible coatings for lightly processed fruits and vegetables. HortScience, 30(1), 35–38.Google Scholar
  3. Baraiya, N. S., Rao, T. V. R., & Thakkar, V. R. (2015). Improvement of postharvest quality and storability of jamun fruit (Syzygium cumini L. Var. Paras) by zein coating enriched with antioxidants. Food and Bioprocess Technology, 8(11), 2225–2234.CrossRefGoogle Scholar
  4. Billy, L., Mehinagic, E., Royer, G., Renard, C. M. G. C., Arvisenet, G., Prost, C., & Jourjon, F. (2008). Relationship between texture and pectin composition of two apple cultivars during storage. Postharvest Biology and Technology, 47(3), 315–324.CrossRefGoogle Scholar
  5. Bu, G., Zhu, T., Chen, F., Zhang, N., Liu, K., Zhang, L., & Yang, H. (2015). Effects of saccharide on the structure and antigenicity of β-conglycinin in soybean protein isolate by glycation. European Food Research and Technology, 240, 285–293.CrossRefGoogle Scholar
  6. Chatjigakis, A. K., Pappas, C., Proxenia, N., Kalantzi, O., Rodis, P., & Polissiou, M. (1998). FT-IR spectroscopic determination of the degree of esterification of cell wall pectins from stored peaches and correlation to textural changes. Carbohydrate Polymers, 37, 395–408.CrossRefGoogle Scholar
  7. Chen, S., & Nussinovitch, A. (2000). Galactomannans in disturbances of structured wax-hydrocolloid-based coatings of citrus fruit (easy-peelers). Food Hydrocolloids, 14(6), 561–568.CrossRefGoogle Scholar
  8. Chen, F., Liu, H., Yang, H., Lai, S., Cheng, X., Xin, Y., Yang, B., Hou, H., Yao, Y., Zhang, S., Bu, G., & Deng, Y. (2011). Quality attributes and cell wall properties of strawberry (Fragaria annanassa Duch.) under calcium chloride treatment. Food Chemistry, 126(2), 450–459.CrossRefGoogle Scholar
  9. Chen, Y., Chen, F., Lai, S., Yang, H., Liu, H., Liu, K., Bu, G., & Deng, Y. (2013). In vitro study of the interaction between pectinase and chelate-soluble pectin in postharvest apricot fruits. European Food Research and Technology, 237(6), 987–993.CrossRefGoogle Scholar
  10. Chong, J., Lai, S., & Yang, H. (2015). Chitosan combined with calcium chloride impacts fresh-cut honeydew melon by stabilising nanostructures of sodium-carbonate-soluble pectin. Food Control, 53, 195–205.CrossRefGoogle Scholar
  11. Daş, E., Gürakan, G. C., & Bayındırlı, A. (2006). Effect of controlled atmosphere storage, modified atmosphere packaging and gaseous ozone treatment on the survival of Salmonella enteritidis on cherry tomatoes. Food Microbiology, 23(5), 430–438.CrossRefGoogle Scholar
  12. Feng, W., Zheng, X., Chen, J., & Yang, Y. (2008). Combination of cassia oil with magnesium sulphate for control of postharvest storage rots of cherry tomatoes. Crop Protection, 27(1), 112–117.CrossRefGoogle Scholar
  13. Gang, D., Yang, H., & Zuo, Y. (2007). Study on coating preservation of plum and cherry tomato. Chemistry & Bioengineering, 24(3), 47–48.69.Google Scholar
  14. Gnanasambandam, R., & Proctor, A. (2000). Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry, 68, 327–332.CrossRefGoogle Scholar
  15. Kan, J., Liu, J., & Jin, C. (2013). Changes in cell walls during fruit ripening in Chinese ‘honey’ peach. The Journal of Horticultural Science and Biotechnology, 88(1), 37–46.CrossRefGoogle Scholar
  16. Kirby, A. R., Gunning, A. P., & Morris, V. J. (1995). Imaging xanthan gum by atomic force microscopy. Carbohydrate Research, 267, 161–166.CrossRefGoogle Scholar
  17. Lai, S., Chen, F., Zhang, L., Yang, H., Deng, Y., & Yang, B. (2013). Nanostructural difference of water-soluble pectin and chelate-soluble pectin among ripening stages and cultivars of Chinese cherry. Natural Product Research, 27, 379–385.CrossRefGoogle Scholar
  18. Lenucci, M. S., Cadinu, D., Taurino, M., Piro, G., & Dalessandro, G. (2006). Antioxidant composition in cherry and high pigment tomato cultivars. Journal of Agricultural and Food Chemistry, 54(7), 2606–2613.CrossRefGoogle Scholar
  19. Li, M., Chen, F., Yang, B., Lai, S., Yang, H., Liu, K., Bu, G., & Deng, Y. (2015). Preparation of organic tofu using organic compatible magnesium chloride incorporated with polysaccharide coagulants. Food Chemistry, 167, 168–174.CrossRefGoogle Scholar
  20. Liu, H., Chen, F., Yang, H., Yao, Y., Gong, X., Xin, Y., & Ding, C. (2009). Effect of calcium treatment on nanostructure of chelate-soluble pectin and physicochemical and textural properties of apricot fruits. Food Research International, 42, 1131–1140.CrossRefGoogle Scholar
  21. Njombolwana, N. S., Erasmus, A., Van Zyl, J. G., du Plooy, W., Cronje, P. J. R., & Fourie, P. H. (2013). Effects of citrus wax coating and brush type on imazalil residue loading, green mould control and fruit quality retention of sweet oranges. Postharvest Biology and Technology, 86, 362–371.CrossRefGoogle Scholar
  22. Ortiz, A., Seymour, G. B., Tucker, G. A., & Lara, I. (2010). Cell wall disassembly during the melting phase of softening in ‘snow queen’ nectarines. Postharvest Biology and Technology, 58(2), 88–92.CrossRefGoogle Scholar
  23. Raffo, A., Leonardi, C., Fogliano, V., Ambrosino, P., Salucci, M., Gennaro, L., Bugianesi, R., Giuffrida, F., & Quaglia, G. (2002). Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. Journal of Agricultural and Food Chemistry, 50(22), 6550–6556.CrossRefGoogle Scholar
  24. Saucedo-Pompa, S., Rojas-Molina, R., Aguilera-Carbó, A. F., Saenz-Galindo, A., de la Garza, H., Jasso-Cantú, D., & Aguilar, C. N. (2009). Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Research International, 42(4), 511–515.CrossRefGoogle Scholar
  25. Shih, F. F., Daigle, K. W., & Champagne, E. T. (2011). Effect of rice wax on water vapour permeability and sorption properties of edible pullunlan films. Food Chemsitry, 127(1), 118–121.CrossRefGoogle Scholar
  26. Singthong, J., Cui, S., Ningsanond, S., & Goff, H. D. (2004). Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydrate Polymers, 58, 391–400.CrossRefGoogle Scholar
  27. Valipour, M. (2015a). Future of agricultural water management in Africa. Archives of Agronomy and Soil Science, 61(7), 907–927.CrossRefGoogle Scholar
  28. Valipour, M. (2015b). Land use policy and agricultural water management of the previous half of century in Africa. Applied Water Science, 5, 367–395.CrossRefGoogle Scholar
  29. Valipour, M., Ahmadi, M. Z., Raeini-Sarjaz, M., Sefidkouhi, M. A. G., Shahnazari, A., Fazlola, R., & Darzi-Naftchali, A. (2015). Agricultural water management in the world during past half century. Archives of Agronomy and Soil Science, 61(5), 657–678.CrossRefGoogle Scholar
  30. Vriesmann, L. C., & de Oliveira Petkowicz, C. L. (2009). Polysaccharides from the pulp of cupuassu (Theobroma grandiflorum): structural characterization of a pectic fraction. Carbohydrate Polymers, 77(1), 72–79.CrossRefGoogle Scholar
  31. Wang, W., Ma, X., Zou, M., Jiang, P., Hu, W., Li, J., Zhi, Z., Chen, J., Li, S., Ding, T., Ye, X., & Liu, D. (2015). Effects of ultrasound on spoilage microorganisms, quality, and antioxidant capacity of postharvest cherry tomatoes. Journal of Food Science, 80(10), C2117–C2126.CrossRefGoogle Scholar
  32. Xin, Y., Chen, F., Yang, H., Zhang, P., Deng, Y., & Yang, B. (2010). Morphology, profile and role of chelate-soluble pectin on tomato properties during ripening. Food Chemistry, 121(2), 372–380.CrossRefGoogle Scholar
  33. Yang, H. (2014). Atomic force microscopy (AFM): principles, modes of operation and limitations. Hauppauge, NY: Nova Science Publishers, Inc.Google Scholar
  34. Yang, H., Lai, S., An, H., & Li, Y. (2006). Atomic force microscopy study of the ultrastructural changes of chelate-soluble pectin in peaches under controlled atmosphere storage. Postharvest Biology and Technology, 39, 75–83.CrossRefGoogle Scholar
  35. Yapo, B. M. (2011). Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polymer Reviews, 51(4), 391–413.CrossRefGoogle Scholar
  36. Yu, X., & Yang, H. (2017). Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chemistry, 217, 303–310.CrossRefGoogle Scholar
  37. Yu, X., Yang, R., Gu, Z., Lai, S., & Yang, H. (2014). Anti-tumor and immunostimulatory functions of two feruloyl oligosaccharides produced from wheat bran and fermented by Aureobasidium pullumans. BioResources, 9, 6778–6790.Google Scholar
  38. Zdunek, A., Koziol, A., Pieczywek, P. M., & Cybulska, J. (2014). Evaluation of the nanostructure of pectin, hemicellulose and cellulose in the cell walls of pears of different texture and firmness. Food and Bioprocess Technology, 7(12), 3525–3535.CrossRefGoogle Scholar
  39. Zhang, J., & Yang, H. (2017). Effects of potential organic compatible sanitisers on organic and conventional fresh-cut lettuce (Lactuca sativa Var. crispa L). Food Control, 72, 20–26.CrossRefGoogle Scholar
  40. Zhang, L., Chen, F., An, H., Yang, H., Sun, X., Gao, X., & Li, L. (2008). Physicochemical properties, firmness, and nanostructures of sodium carbonate-soluble pectin of 2 Chinese cherry cultivars at 2 ripening stages. Journal of Food Science, 73(6), N17–N22.CrossRefGoogle Scholar
  41. Zhao, Y., Tu, K., Tu, S. C., Liu, M., Su, J., & Hou, Y. (2010). A combination of heat treatment and Pichia guilliermondii prevents cherry tomato spoilage by fungi. International Journal of Food Microbiology, 137(1), 106–110.CrossRefGoogle Scholar
  42. Zhao, L., Zhang, Y., & Yang, H. (2017). Efficacy of low concentration neutralised electrolysed water and ultrasound combination for inactivating Escherichia coli ATCC 25922, Pichia pastoris GS115 and Aureobasidium pullulans 2012 on stainless steel coupons. Food Control. doi: 10.1016/j.foodcont.2016.09.041.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Food Science and TechnologyHenan University of TechnologyZhengzhouPeople’s Republic of China
  2. 2.Food Science and Technology Programme, c/o Department of ChemistryNational University of SingaporeSingaporeSingapore
  3. 3.National University of Singapore (Suzhou) Research InstituteSuzhouPeople’s Republic of China
  4. 4.Guangzhou Pulu Medical Technology Co., LtdGuangzhouPeople’s Republic of China

Personalised recommendations