Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 2, pp 307–316 | Cite as

Heat Transfer Enhancement in Thermal Processing of Tomato Juice by Application of Nanofluids

  • S. M. Jafari
  • S. S. Jabari
  • D. Dehnad
  • S. A. Shahidi
Original Paper

Abstract

In this research, our chief aim was to survey possible improvements in thermophysical properties of nanofluids when they are used as heating mediums for time reduction and energy saving in food industries for the first time. Accordingly, three different variables of temperature (70, 80, and 90 °C), alumina nanoparticle concentration (0, 2, and 4 %), and time (30, 60, and 90 s) were selected for thermal processing of tomato juice by a shell and tube heat exchanger. Our results revealed that incorporation of nanoparticles could raise density, viscosity, and thermal conductivity and decrease heat capacity, but this increasing/decreasing trend was linear or non-linear depending on the diameter of the nanoparticles. Four percent Al2O3–water, compared with 2 % nanofluid and pure water (0 % nanofluid), had the highest overall heat transfer coefficients for all Re numbers. Incorporating nanoparticles into the base heating fluid of water could augment the effectiveness of the heat exchanger by 49 %. Thermal processing time of tomato juice was shorter for 2 and 4 % nanofluids, compared with water, by 22.23 and 46.29 %, respectively; this time reduction caused energy saving rates for 2 and 4 % nanofluids to be improved by 22.3 and 48.76 %, respectively.

Keywords

Nanofluid Heat exchanger Alumina nanoparticle Tomato juice 

Nomenclature

A

Heat transfer area (m2)

Cp

Specific heat (kJ kg−1 K−1)

D

Tube diameter (m)

d

Nanoparticle diameter (m)

h

Heat transfer coefficient (W m−2 K−1)

k

Thermal conductivity (W m−1 K−1)

L

Tube length (m)

m

Mass flow rate (kg s−1 )

Nu

Nusselt number

Pe

Peclet number

Pr

Prandtl number

Q

Heat quantity (W)

Re

Reynolds number

T

Temperature (K)

U

Overall heat transfer coefficient (W m−2 K−1)

V

Flow velocity (m s−1)

ƒ

Coefficient of friction

∆p

Pressure drop (Pa)

P

Pump power (W)

Greek Letters

α

Thermal diffusivity (m2 s−1)

ρ

Density (kg m −3 )

η

Kinematic viscosity (m2 s−1)

φ

Volume concentration (%)

∆Tlm

Log mean temperature difference

Subscripts

f

Fluid

in

Inlet

m

Mean

nf

Nanofluid

out

Outlet

p

Particle

w

Wall

i

Inside

o

Outside

H

Hot

C

Cold

min

Minimum

max

Maximum

Notes

Acknowledgment

The Iran National Science Foundation (INSF) and the Iran Nanotechnology Initiative Council (INIC) are appreciated for the financial support.

References

  1. Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507.CrossRefGoogle Scholar
  2. Ajmera, S. (2006). The effects of different cooling times and temperatures on tomato sauce lycopene content. MSc thesis: Bowling Green State University.Google Scholar
  3. Albadr, J., Tayal, S., & Alasadi, M. (2013). Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Studies in Thermal Engineering, 1, 38–44.CrossRefGoogle Scholar
  4. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79(14), 2252–2254.CrossRefGoogle Scholar
  5. Cortes, C., Esteve, M. J., & Frigola, A. (2008). Color of orange juice treated by high intensity pulsed electric fields during refrigerated storage and comparison with pasteurized juice. Food Control, 19(2), 151–158.CrossRefGoogle Scholar
  6. Coulson, J. M., & Richardson, J. F. (1999). Chemical engineering design (third ed.pp. 635–702). London: Butterworth Heinemann.Google Scholar
  7. Farajollahi, B., Etemad, S. G., & Hojjat, M. (2010). Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 53, 12–17.CrossRefGoogle Scholar
  8. Food and Drug Administration (FDA). (2004). Guidance for industry: juice HACCP hazards and controls guidance, first ed.Google Scholar
  9. Ho, C. J., Wei, L. C., & Li, Z. W. (2010). An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Applied Thermal Engineering, 30, 96–103.CrossRefGoogle Scholar
  10. Jabbari, S. S., Jafari, S. M., Dehnad, D., & Shahidi, S.A. (2016). Effects of thermal processing by nanofluids on vitamin C, total phenolics and total soluble solids of tomato juice. Journal of Food Science and Technology, In Press.Google Scholar
  11. Jafari, S. M., Azizi, D., Mirzaei, H., & Dehnad, D. (2016). Comparing quality characteristics of oven-dried and refractance window-dried kiwifruits. Journal of Food Processing and Preservation, 40(3), 362–372.Google Scholar
  12. Jafari, S. M., Saremnejad, F., Dehnad, D., & Rashidi, A. M. (2016a). Evaluation of performance and thermophysical properties of alumina nanofluids as heating medium in a shell and tube exchanger. Journal of Food Process Engineering, Under Review. Google Scholar
  13. Jafari, S. M., Saremnejad, F., Dehnad, D., & Rashidi, A. M. (2016b). Nano-fluid thermal processing of watermelon juice in a shell and tube heat exchanger and evaluating its qualitative properties. Innovative Food Science and Emerging Technologies, Under Review.Google Scholar
  14. Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45, 855–863.CrossRefGoogle Scholar
  15. Luciu, R. S., Mateescu, T., Cotorobai, V., & Mare, T. (2009). Nusselt number and convection heat transfer coefficient for a coaxial heat exchanger using Al2O3–water pH=5 Nano-fluid. Bulletin of the Polytechnic Institute of Jassy, Constructions, Architechture Section, 2, 71–80.Google Scholar
  16. Mare, T., Halelfadl, S., Sow, O., Estelle, P., Duret, S., & Bazantay, F. (2011). Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger. Experimental Thermal and Fluid Science, 35(8), 1535–1543.CrossRefGoogle Scholar
  17. Nasiri, M., Etemad, S. G., & Bagheri, R. (2011). Experimental heat transfer of nanofluid through an annular duct. International Communications in Heat and Mass Transfer, 38(7), 958–963.CrossRefGoogle Scholar
  18. Nguyen, C. T., Roy, G., & Lajoie, P. R. (2005). Refroidissement des microprocesseurs a haute performance en utilisant des Nano-fluids. In Proceedings of Congres Francais de Thermique SFT, Université de Reims Champagne-Ardenne, France, pp. 483–488.Google Scholar
  19. Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11, 151–170.CrossRefGoogle Scholar
  20. Palm, S. J., Roy, G., & Nguyen, C. T. (2006). Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties. Applied Thermal Engineering, 26, 2209–2218.CrossRefGoogle Scholar
  21. Pandey, S. D., & Nema, V. K. (2012). Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Experimental Thermal and Fluid Science, 38, 248–256.CrossRefGoogle Scholar
  22. Peyghambarzadeh, S. M., Hashemabadi, S. H., Hoseini, S. M., & Seifi Jamnani, M. (2011). Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. International Communications in Heat and Mass Transfer, 38, 1283–1290.CrossRefGoogle Scholar
  23. Pritiviraj, M., & Andrews, M. J. (1996). A numerical investigation of the 3-D flow in shell and tube heat exchangers, Proceedings of the ASME Heat Transfer Division, Vol. 4, ASM.Google Scholar
  24. Putra, N., Septiadi, W. N., Julian, G., Maulana, A., & Irwansyah, R. (2013). An experimental study on thermal performance of Nano-fluids in microchannel heat exchanger. International Journal of Technology, 2, 167–177.CrossRefGoogle Scholar
  25. Richardson P. (2008). Pack processed foods improving quality, first ed., Woodhead Publishing, p.34.Google Scholar
  26. Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47, 5181–5188.CrossRefGoogle Scholar
  27. Worth, D., & Mascone, C. F. (1991). Heat transfer heads into the 21st century, Chemical Engineering Progress.Google Scholar
  28. Xuan, Y., & Li, Q. (2003). Investigation on convective heat transfer and flow features of Nano-fluids. Journal of Heat Transfer, 125, 151–155.CrossRefGoogle Scholar
  29. Xuan, Y., & Roetzel, W. (2000). Conceptions for heat transfer correlation of Nano-fluid. International Journal of Heat and Mass Transfer, 43, 3701–3707.CrossRefGoogle Scholar
  30. Zeinali Heris, S., Noie, S. H., Talaii, E., & Sargolzaei, J. (2011). Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts. Nanoscale Research Letters, 6(1), 179–189.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. M. Jafari
    • 1
  • S. S. Jabari
    • 2
  • D. Dehnad
    • 3
  • S. A. Shahidi
    • 4
  1. 1.Department of Food Materials and Process Design EngineeringGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
  2. 2.Young Researchers and Elite Club, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
  3. 3.Young Researchers and Elites club, Gorgan BranchIslamic Azad UniversityGorganIran
  4. 4.Department of Food Science and TechnologyIslamic Azad UniversityTehranIran

Personalised recommendations