Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 1, pp 131–142 | Cite as

In Vitro Zinc Protoporphyrin IX Formation in Different Meat Sources Related to Potentially Important Intrinsic Parameters

  • Hannelore De Maere
  • Sylvie Chollet
  • Erik Claeys
  • Chris Michiels
  • Marlies Govaert
  • Eveline De Mey
  • Hubert Paelinck
  • Ilse Fraeye
Original Paper

Abstract

For several years, researchers have studied the formation of zinc protoporphyrin IX in meat, as it is considered to be an important natural colouring agent in dry cured or fermented meat products in the absence of nitrite and/ or nitrate. Until now, however, mainly pork meat is used for these investigations. The goal of this research was to relate in vitro zinc protoporphyrin IX and protoporphyrin IX formation in eight meat sources (chicken, turkey, pork, lamb, beef, veal, horse and porcine liver) to eight intrinsic parameters using partial least squares regression (PLS) analysis. Significant differences in pH, initial metmyoglobin formation, metmyoglobin reduction ability, total heme, zinc chelatase activity, and total iron and zinc concentration between meat sources were found. Water activity, however, was not significantly different between meat sources. Liver tissue and horse meat showed the best ability to form zinc protoporphyrin IX. Formation of protoporphyrin IX was limited in all meat sources. PLS analysis revealed that mainly zinc chelatase activity, followed by total heme, total iron and zinc content, were predominant intrinsic parameters to explain variations in zinc protoporphyrin IX formation. These findings could be important for meat industry in order to establish the production of red coloured nitrite-free meat products.

Keywords

Zinc chelatase activity Total heme Iron and zinc content Zinc protoporphyrin IX formation 

Notes

Acknowledgments

This work was performed with financial support of internal funding of KU Leuven.

References

  1. Adamsen, C. E., Møller, J. K. S., Laursen, K., Olsen, K., & Skibsted, L. H. (2006). Zn-porphyrin formation in cured meat products: effect of added salt and nitrite. Meat Science, 72(4), 672–679.CrossRefGoogle Scholar
  2. Ajioka, R. S., Phillips, J. D., & Kushner, J. P. (2006). Biosynthesis of heme in mammals. Biochimica et Biophysica Acta, 1763(7), 723–736.CrossRefGoogle Scholar
  3. AMSA. (2012). AMSA Meat Color Measurement Guidelines Measurement.Google Scholar
  4. Becker, E. M., Westermann, S., Hansson, M., & Skibsted, L. H. (2012). Parallel enzymatic and non-enzymatic formation of zinc protoporphyrin IX in pork. Food Chemistry, 130(4), 832–840.CrossRefGoogle Scholar
  5. Belgische voedingsmiddelentabel, Nubel vzw, 5e editie (2010).Google Scholar
  6. Chan, J. T. Y., Omana, D. A., & Betti, M. (2011). Effect of ultimate pH and freezing on the biochemical properties of proteins in Turkey breast meat. Food Chemistry, 127(1), 109–117.CrossRefGoogle Scholar
  7. Chau, T. T., Ishigaki, M., Kataoka, T., & Taketani, S. (2010). Porcine ferrochelatase: the relationship between iron-removal reaction and the conversion of heme to Zn-protoporphyrin. Bioscience, Biotechnology, and Biochemistry, 74(7), 1415–1420.CrossRefGoogle Scholar
  8. Chau, T. T., Ishigaki, M., Kataoka, T., & Taketani, S. (2011). Ferrochelatase catalyzes the formation of Zn-protoporphyrin of dry-cured ham via the conversion reaction from heme in meat. Journal of Agricultural and Food Chemistry, 59(22), 12238–12245.CrossRefGoogle Scholar
  9. Cross, A. A. J., Harnly, J. J. M., Ferrucci, L. M. L., Risch, A., Mayne, S. T., & Sinha, R. (2012). Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food and Nutrition Sciences, 3(7), 905–913.CrossRefGoogle Scholar
  10. Dailey, H. A., Dailey, T. A., Wu, C., Medlock, A. E., Wang, K., Rose, J. P., & Wang, B. (2000). Ferrochelatase at the millennium: structures , mechanisms and [ 2Fe-2S ] clusters. Cellular and Molecular Life Sciences, 57, 1909–1926.CrossRefGoogle Scholar
  11. De Maere, H., Fraeye, I., De Mey, E., Dewulf, L., Michiels, C., Paelinck, H., & Chollet, S. (2016). Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages. Meat Science, 114, 1–7.CrossRefGoogle Scholar
  12. Devine, C., & Dikeman, M. (2004). Encyclopedia of Meat Sciences ed. Elsevier Acad: Press, Oxford.Google Scholar
  13. Durek, J., Bolling, J. S., Knorr, D., Schwägele, F., & Schlüter, O. (2012). Effects of different storage conditions on quality related porphyrin fluorescence signatures of pork slices. Meat Science, 90(1), 252–258.CrossRefGoogle Scholar
  14. Elroy, N. N., Rogers, J., Mafi, G. G., Van Overbeke, D. L., Hartson, S. D., & Ramanathan, R. (2015). Species-specific effects on non-enzymatic metmyoglobin reduction in vitro. Meat Science, 105, 108–113.CrossRefGoogle Scholar
  15. Estévez, M., & Cava, R. (2004). Lipid and protein oxidation, release of iron from heme molecule and colour deterioration during refrigerated storage of liver pâté. Meat Science, 68(4), 551–558.CrossRefGoogle Scholar
  16. Ferreira, G. C. (1999). Ferrochelatase. The International Journal of Biochemistry & Cell Biology, 31(10), 995–1000.CrossRefGoogle Scholar
  17. Gill, C. O. (2005). Safety and storage stability of horse meat for human consumption. Meat Science, 71(3), 506–513.CrossRefGoogle Scholar
  18. Grossi, A. B., do Nascimento, E. S. P., Cardoso, D. R., & Skibsted, L. H. (2014). Proteolysis involvement in zinc–protoporphyrin IX formation during Parma ham maturation. Food Research International, 56, 252–259.CrossRefGoogle Scholar
  19. Gurtler, J. B., Doyle, M. P., & Kornacki, J. L. (2014). The microbiological safety of spices and low-water activity foods and spices. Food microbiology and food safety. New York: Springer Science.Google Scholar
  20. Hunter, G. A., Sampson, M. P., & Ferreira, G. C. (2008). Metal ion substrate inhibition of ferrochelatase. The Journal of Biological Chemistry, 283(35), 23685–23691.CrossRefGoogle Scholar
  21. International Organization for Standardization (1997). Determination of moisture content, ISO 1442:1997 standard.Google Scholar
  22. Ishikawa, H., Yoshihara, M., Baba, A., Kawabuchi, T., Sato, M., Numata, M., & Matsumoto, K. (2006). Formation of zinc protoporphyrin IX from myoglobin with pork loin extract. Journal of the Faculty of Agriculture, 51(1), 93–97.Google Scholar
  23. Ishikawa, H., Kawabuchi, T., Kawakami, Y., Sato, M., Numata, M., & Matsumoto, K. (2007). Formation of zinc protoporphyrin IX and protoporphyrin IX from oxymyoglobin in porcine heart mitochondria. Food Science and Technology Research, 13(1), 85–88.CrossRefGoogle Scholar
  24. Jacobs, J. M., Sinclair, P. R., Sinclair, J. F., Gorman, N., Walton, H. S., Wood, S. G., & Nichols, C. (1998). Formation of zinc protoporphyrin in cultured hepatocytes: effects of ferrochelatase inhibition, iron chelation or lead. Toxicology, 125(2–3), 95–105.CrossRefGoogle Scholar
  25. Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Modern food microbiology (7th ed.). New York: Springer Science.Google Scholar
  26. Klont, R. E., Barnier, V. M. H., Van Dijk, A., Smulders, F. J. M., Hoving-Bolink, A. H., Hulsegge, B., & Eikelenboom, G. (2000). Effects of rate of pH fall, time of deboning, aging period, and their interaction on veal quality characteristics. Journal of Animal Science, 78(7), 1845–1851.CrossRefGoogle Scholar
  27. Labbé, R. F., Vreman, H. J., & Stevenson, D. K. (1999). Zinc protoporphyrin: a metabolite with a mission. Clinical Chemistry, 45(12), 2060–2072.Google Scholar
  28. Lammens, V., Peeters, E., De Maere, H., De Mey, E., Paelinck, H., Leyten, J., & Geers, R. (2007). A survey of pork quality in relation to pre-slaughter conditions, slaughterhouse facilities, and quality assurance. Meat Science, 75(3), 381–387.CrossRefGoogle Scholar
  29. Lindahl, G. (2005). Colour Characteristics of Fresh Pork. Doctor’s dissertation. Google Scholar
  30. Litwinczuk, A., Florek, M., Skalecki, P., & Litwinczuk, Z. (2008). Chemical composition and physicochemical properties of horse meat from the longissimus. Journal of Muscle Foods, 19(3), 223–236.CrossRefGoogle Scholar
  31. Lombardi-Boccia, G., Martinez-Dominguez, B., & Aguzzi, A. (2002). Total heme and non-heme iron in raw and cooked meats. Journal of Food Chemistry and Toxicology, 67(5), 1738–1741.Google Scholar
  32. Mancini, R. A., Seyfert, M., & Hunt, M. C. (2008). Effects of data expression, sample location, and oxygen partial pressure on initial nitric oxide metmyoglobin formation and metmyoglobin-reducing-activity measurement in beef muscle. Meat Science, 79(2), 244–251.CrossRefGoogle Scholar
  33. Mikkelsen, A., Juncher, D., & Skibsted, L. H. (1999). Metmyoglobin reductase activity in porcine M. longissimus dorsi muscle. Meat Science, 51(2), 155–161.CrossRefGoogle Scholar
  34. Parolari, G., Benedini, R., & Toscani, T. (2009). Color formation in nitrite-free dried hams as related to Zn-protoporphyrin IX and Zn-chelatase activity. Journal of Food Science, 74(6), 413–418.CrossRefGoogle Scholar
  35. Samel, L. M., Hunt, M. C., Kropf, D. H., Hachmeister, K. A., & Johnson, D. E. (2002). Comparison of assays for metmyoglobin reducing ability in beef inside and outside. Food Chemistry and Toxicology, 67(3), 978–984.Google Scholar
  36. Schneider, J., Wulf, J., Surowsky, B., Schmidt, H., Schwägele, F., & Schlüter, O. (2008). Fluorimetric detection of protoporphyrins as an indicator for quality monitoring of fresh intact pork meat. Meat Science, 80(4), 1320–1325.CrossRefGoogle Scholar
  37. Wakamatsu, J., Nishimura, T., & Hattori, A. (2004a). A Zn-porphyrin complex contributes to bright red color in Parma ham. Meat Science, 67(1), 95–100.CrossRefGoogle Scholar
  38. Wakamatsu, J., Okui, J., Ikeda, Y., Nishimura, T., & Hattori, A. (2004b). Establishment of a model experiment system to elucidate the mechanism by which Zn-protoporphyrin IX is formed in nitrite-free dry-cured ham. Meat Science, 68(2), 313–317.CrossRefGoogle Scholar
  39. Wakamatsu, J., Okui, J., Hayashi, N., Nishimura, T., & Hattori, A. (2007). Zn protoporphyrin IX is formed not from heme but from protoporphyrin IX. Meat Science, 77(4), 580–586.CrossRefGoogle Scholar
  40. Wakamatsu, J., Odagiri, H., Nishimura, T., & Hattori, A. (2009). Quantitative determination of Zn protoporphyrin IX, heme and protoporphyrin IX in Parma ham by HPLC. Meat Science, 82(1), 139–142.CrossRefGoogle Scholar
  41. Wakamatsu, J., Murakami, N., & Nishimura, T. (2015). A comparative study of zinc protoporphyrin IX-forming properties of animal by-products as sources for improving the color of meat products. Animal Science Journal, 86, 547–552.CrossRefGoogle Scholar
  42. Warriss, P. D., Brown, S. N., Adams, S. J., & Lowe, D. B. (1990). Variation in haem pigment concentration and colour in meat from British pigs. Meat Science, 28(4), 321–329.CrossRefGoogle Scholar
  43. Zhu, L. G., & Brewer, M. S. (1998). Metmyoglobin reducing capacity of fresh normal, PSE, and DFD pork during retail display. Journal of Food Science, 63(3), 390–393.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hannelore De Maere
    • 1
  • Sylvie Chollet
    • 2
  • Erik Claeys
    • 3
  • Chris Michiels
    • 4
  • Marlies Govaert
    • 1
  • Eveline De Mey
    • 1
  • Hubert Paelinck
    • 1
  • Ilse Fraeye
    • 1
  1. 1.Research Group for Technology and Quality of Animal Products, Department M2S, member of Leuven Food Science and Nutrition Research Centre (LFoRCe)KU Leuven Technology Campus GhentGhentBelgium
  2. 2.IICV – Institut Charles ViolletteLilleFrance
  3. 3.UGent - Lanupro Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience EngineeringGhent UniversityMelleBelgium
  4. 4.Centre for Food and Microbial Technology, Department M2S, member of Leuven Food Science and Nutrition Research Centre (LFoRCe)KU LeuvenLeuvenBelgium

Personalised recommendations