Advertisement

Food and Bioprocess Technology

, Volume 9, Issue 7, pp 1249–1257 | Cite as

Synergistic Effect and Mechanisms of Combining Ultrasound and Pectinase on Pectin Hydrolysis

  • Xiaobin Ma
  • Lifen Zhang
  • Wenjun Wang
  • Mingming Zou
  • Tian Ding
  • Xingqian Ye
  • Donghong LiuEmail author
Original Paper

Abstract

The current study aimed to investigate the synergistic effect of ultrasound and pectinase on pectin hydrolysis. Effects of ultrasound on the hydrolysis rate of pectin, enzymatic kinetics parameters and pectinase structures (determined by the DNS method, Michaelis–Menten equation, chemical reaction kinetics model, fluorescence spectroscopy and circular dichroism spectroscopy) were also studied in order to illuminate the mechanisms of the synergistic effect. The hydrolysis rate of pectin achieved maximum value with ultrasound treatment at 4.5 W mL−1 intensity and ultrasound time of 10 min, increasing by 32.59 % over the control. The optimum temperature for the hydrolysis reaction was 50 °C and kept unchanged with ultrasound treatment. Besides, the value of V max increased whereas K m decreased in the sonoenzymolysis reaction compared with that in the routine enzymolysis reaction. Results indicated that under ultrasound irradiation, pectin was hydrolyzed at an elevated rate and the pectinase exhibited stronger affinity to the substrate. Fluorescence spectra revealed that ultrasound favorably decreased the amount of tryptophan on the pectinase surface; while the far-UV circular dichroism spectra showed an increased fraction of β-sheet and a reduced fraction of random coil in the secondary conformation. Changes in the pectinase structures contributed to the enhancement of pectinase activity and the consequent promotion of the hydrolysis process. Results of pectin degradation kinetics certified the synergistic effect of ultrasound and pectinase at the temperature range of 20–50 °C, which were evidenced from the positive values of the synergistic coefficients.

Keywords

Hydrolysis rate Kinetics Structures Synergistic coefficient 

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Project 31371872).

References

  1. Bashari, M., Eibaid, A., Wang, J., Tian, Y., Xu, X., & Jin, Z. (2013). Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrasonics Sonochemistry, 20(1), 155–161.CrossRefGoogle Scholar
  2. Bashari, M., Abdelhai, M. H., Abbas, S., Eibaid, A., Xu, X., & Jin, Z. (2014). Effect of ultrasound and high hydrostatic pressure (US/HHP) on the degradation of dextran catalyzed by dextranase. Ultrasonics Sonochemistry, 21(1), 76–83.CrossRefGoogle Scholar
  3. Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4SI), 813–835.CrossRefGoogle Scholar
  4. Cho, S. W., Lee, S., & Shin, W. (2001). The X-ray structure of Aspergillus aculeatus polygalacturonase and a modeled structure of the polygalacturonase-octagalacturonate complex. Journal of Molecular Biology, 311(4), 863–878.CrossRefGoogle Scholar
  5. Cravotto, G., Binello, A., Di Carlo, S., Orio, L., Wu, Z., & Ondruschka, B. (2010). Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation. Environmental Science and Pollution Research, 17(3), 674–687.CrossRefGoogle Scholar
  6. Geng, M., & Thagard, S. M. (2013). The effects of externally applied pressure on the ultrasonic degradation of Rhodamine B. Ultrasonics Sonochemistry, 20(1), 618–625.CrossRefGoogle Scholar
  7. Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60–72.CrossRefGoogle Scholar
  8. Joseph, C. G., Puma, G. L., Bono, A., & Krishnaiah, D. (2009). Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 16(5), 583–589.CrossRefGoogle Scholar
  9. Joseph, C. G., Puma, G. L., Bono, A., Taufiq-Yap, Y. H., & Krishnaiah, D. (2011). Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol. Desalination, 276(1-3), 303–309.CrossRefGoogle Scholar
  10. Ma, H., Huang, L., Jia, J., He, R., Luo, L., & Zhu, W. (2011). Effect of energy-gathered ultrasound on Alcalase. Ultrasonics Sonochemistry, 18(1), 419–424.CrossRefGoogle Scholar
  11. Ma, X., Wang, W., Zou, M., Ding, T., Ye, X., and Liu, D. (2015). Properties and structures of commercial polygalacturonase with ultrasound treatment: role of ultrasound in enzyme activation. RSC Advances.Google Scholar
  12. Maxwell, E. G., Belshaw, N. J., Waldron, K. W., & Morris, V. J. (2012). Pectin—an emerging new bioactive food polysaccharide. Trends in Food Science & Technology, 24(2), 64–73.CrossRefGoogle Scholar
  13. Nachiappan, S., & Muthukumar, K. (2013). Treatment of pharmaceutical effluent by ultrasound coupled with dual oxidant system. Environmental Technology, 34(2), 209–217.CrossRefGoogle Scholar
  14. Niture, S. K., & Refai, L. (2013). Plant pectin: a potential source for cancer suppression. American Journal of Pharmacology and Toxicology, 8(1), 9.CrossRefGoogle Scholar
  15. Ortega, N., de Diego, S., Perez-Mateos, M., & Busto, M. D. (2004). Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification. Food Chemistry, 88(2), 209–217.CrossRefGoogle Scholar
  16. Prajapat, A. L., Subhedar, P. B., & Gogate, P. R. (2016). Ultrasound assisted enzymatic depolymerization of aqueous guar gum solution. Ultrasonics Sonochemistry, 29, 84–92.CrossRefGoogle Scholar
  17. Sabarez, H., Oliver, C. M., Mawson, R., Dumsday, G., Singh, T., Bitto, N., McSweeney, C., & Augustin, M. A. (2014). Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff. Ultrasonics Sonochemistry, 21(6SI), 2084–2091.CrossRefGoogle Scholar
  18. Sharma, N., Rathore, M., & Sharma, M. (2013). Microbial pectinase: sources, characterization and applications. Reviews in Environmental Science and Biotechnology, 12(1), 45–60.CrossRefGoogle Scholar
  19. Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323–331.CrossRefGoogle Scholar
  20. Subhedar, P. B., & Gogate, P. R. (2013). Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review. Industrial & Engineering Chemistry Research, 52(34), 11816–11828.CrossRefGoogle Scholar
  21. Subhedar, P. B., & Gogate, P. R. (2014). Enhancing the activity of cellulase enzyme using ultrasonic irradiations. Journal of Molecular Catalysis B: Enzymatic, 101, 108–114.CrossRefGoogle Scholar
  22. Sun, Y., Ma, G., Ye, X., Kakuda, Y., & Meng, R. (2010). Stability of all-trans-beta-carotene under ultrasound treatment in a model system: effects of different factors, kinetics and newly formed compounds. Ultrasonics Sonochemistry, 17(4), 654–661.CrossRefGoogle Scholar
  23. van Pouderoyen, G., Snijder, H. J., Benen, J., & Dijkstra, B. W. (2003). Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. FEBS Letters, 554(3), 462–466.CrossRefGoogle Scholar
  24. van Santen, Y., Benen, J., Schroter, K. H., Kalk, K. H., Armand, S., Visser, J., & Dijkstra, B. W. (1999). 1.68-angstrom crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. Journal of Biological Chemistry, 274(43), 30474–30480.CrossRefGoogle Scholar
  25. Whitmore, L., & Wallace, B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers, 89(5), 392–400.CrossRefGoogle Scholar
  26. Xu, Y., Zhang, L., Bailina, Y., Ge, Z., Ding, T., Ye, X., & Liu, D. (2014). Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. Journal of Food Engineering, 126, 72–81.CrossRefGoogle Scholar
  27. Yachmenev, V., Condon, B., Klasson, T., & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials and Bioenergy, 3(1), 25–31.CrossRefGoogle Scholar
  28. Zhang, Y., Fu, E., & Liang, J. (2008). Effect of ultrasonic waves on the saccharification processes of lignocellulose. Chemical Engineering & Technology, 31(10), 1510–1515.CrossRefGoogle Scholar
  29. Zhang, L., Ye, X., Ding, T., Sun, X., Xu, Y., & Liu, D. (2013a). Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry, 20(1), 222–231.CrossRefGoogle Scholar
  30. Zhang, L., Ye, X., Xue, S. J., Zhang, X., Liu, D., Meng, R., & Chen, S. (2013b). Effect of high-intensity ultrasound on the physicochemical properties and nanostructure of citrus pectin. Journal of the Science of Food and Agriculture, 93(8), 2028–2036.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaobin Ma
    • 1
  • Lifen Zhang
    • 1
    • 2
  • Wenjun Wang
    • 1
  • Mingming Zou
    • 1
  • Tian Ding
    • 1
    • 3
  • Xingqian Ye
    • 1
    • 3
    • 4
  • Donghong Liu
    • 1
    • 3
    • 4
    Email author
  1. 1.College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
  2. 2.College of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
  3. 3.Zhejiang Key Laboratory for Agro-Food ProcessingZhejiang R&D Center for Food Technology and EquipmentHangzhouChina
  4. 4.Fuli Institute of Food ScienceZhejiang UniversityHangzhouChina

Personalised recommendations