Advertisement

Food and Bioprocess Technology

, Volume 9, Issue 6, pp 1070–1078 | Cite as

Frozen Concentrated Orange Juice (FCOJ) Processed by the High Pressure Homogenization (HPH) Technology: Effect on the Ready-to-Drink Juice

  • Thiago Soares Leite
  • Pedro E. D. Augusto
  • Marcelo CristianiniEmail author
Original Paper

Abstract

The high pressure homogenization (HPH) process can be used to reduce the consistency of frozen concentrated orange juice (FCOJ), which is highly desirable in industrial processing due to the reduction in energy costs. The production of FCOJ is almost entirely destined to obtaining the reconstituted (ready-to-drink (RTD)) juice. Consequently, this study aimed to evaluate the effect of the HPH processing on the ready-to-drink juice. FCOJ (66°Brix) was processed by HPH up to 150 MPa and then diluted to 11°Brix for evaluation. The RTD juice was evaluated by pulp sedimentation, instrumental colour, turbidity (serum cloudiness), rheological properties and sensorial perception. The HPH process decreased the absorbance of the serum phase, which was related to the disruption of the suspended particles. Further, the process slightly reduced the RTD juice viscosity. However, the HPH showed no effect on the product colour, pulp sedimentation behaviour and sensorial perception (visual aspect, odour, flavour, viscosity, overall liking). Therefore, it was concluded that the HPH process can be used to promote desirable effects on FCOJ, without affecting the RTD juice properties.

Keywords

Orange product Dynamic high pressure Physical stability Rheology Consumer sensory perception 

Nomenclature

\( \overset{\cdotp }{\gamma } \)

Shear rate [s−1]

μ

\( \mathrm{viscosity}\ \left(=\sigma /\overset{\cdotp }{\gamma}\right) \) [Pa s]

σ

Shear stress [Pa]

σ0

Yield stress, Herschel-Bulkley’s model (Eq. 1) [Pa]

ABS

Absorbance at 660 nm (Eq. 2)

SI

Sedimentation index (Eq. 1) [−]

SIe

Sedimentation index at equilibrium (infinite time) (Eq. 3) [−]

SIi

Initial value of sedimentation index (time 0) (Eq. 3) [−]

k

Consistency index, Herschel-Bulkley model (Eq. 1) [Pa sn]

kSI

Kinetic parameter in the sedimentation index model (Eq. 3) [day−1]

n

Flow behaviour index, Herschel-Bulkley’s model (Eq. 1) [−]

PH

Homogenization pressure [MPa]

t

Time (Eq. 3) [days]

Notes

Acknowledgments

The authors thank the São Paulo Research Foundation (FAPESP) for funding project no. 2012/15253-9 and TS Leite scholarship (2012/17381-4).

References

  1. Augusto, P. E. D., Ibarz, A., & Cristianini, M. (2012a). Effect of high pressure homogenization (HPH) on the rheological properties of a fruit juice serum model. Journal of Food Engineering, 111, 474–477.CrossRefGoogle Scholar
  2. Augusto, P. E. D., Ibarz, A., & Cristianini, M. (2012b). Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: time-dependent and steady-state shear. Journal of Food Engineering, 111, 570–579.CrossRefGoogle Scholar
  3. Augusto, P. E. D., Ibarz, A., & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: creep and recovery behaviours. Foodservice Research International, 54, 169–176.CrossRefGoogle Scholar
  4. Betoret, E., Betoret, N., Carbonell, J. V., & Fito, P. (2009). Effects of pressure homogenization on particle size and the functional properties of citrus juices. Journal of Food Engineering, 92, 18–23.CrossRefGoogle Scholar
  5. Betoret, E., Sentadreu, E., Betoret, N., & Fito, P. (2012). Homogenization pressures applied to citrus juice manufacturing. Functional properties and application. Journal of Food Engineering, 111(1), 28–33.CrossRefGoogle Scholar
  6. Buslig, B. S., & Carter, R. D. (1974). Particle size distribution in orange juices. Proceedings of Florida State Horticultural Society, 87, 302–305.Google Scholar
  7. Cameron, R. G., Baker, R. A., & Grohmann, K. (1997). Citrus tissue extracts affect juice cloud stability. Journal of Food Science, 62(2), 242–245.CrossRefGoogle Scholar
  8. Campos, F. P., & Cristianini, M. (2007). Inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum in orange juice using ultra high-pressure homogenization. Innovative Food Science & Emerging Technologies, 8, 226–229.CrossRefGoogle Scholar
  9. Carbonell, J. V., Navarro, J. L., Izquierdo, L., & Sentandreu, E. (2013). Influence of high pressure homogenization and pulp reduction on residual pectinmethylesterase activity, cloud stability and acceptability of lane late orange juice: a study to obtain high quality orange juice with extended shelf life. Journal of Food Engineering, 119, 696–700.CrossRefGoogle Scholar
  10. Cerdán-Calero, M., Izquierdo, L., & Sentandreu, E. (2013). Valencia late orange juice preserved by pulp reduction and high pressure homogenization: sensory quality and gas chromatography–mass spectrometry analysis of volatiles. LWT - Food Science and Technology, 51, 476–483.CrossRefGoogle Scholar
  11. Corredig, M., & Wicker, L. (2001). Changes in the molecular weight distribution of three commercial pectins after valve homogenization. Food Hydrocolloids, 15, 17–23.CrossRefGoogle Scholar
  12. Croak, S., & Corredig, M. (2006). The role of pectin in orange juice stabilization: effect of pectin methylesterase and pectinase activity on the size of cloud particles. Food Hydrocolloids, 20, 961–965.CrossRefGoogle Scholar
  13. Dong, X., Zhao, M., Yang, B., Yang, X., Shi, J., & Jiang, Y. (2011). Effect of high-pressure homogenization on the functional property of peanut protein. Journal of Food Process Engineering, 34, 2191–2204.CrossRefGoogle Scholar
  14. Dumay, E., Chevalier-Lucia, D., Picart-Palmade, L., Benzaria, A., Gràcia-Julia, A., & Blayo, C. (2013). Review technological aspects and potential applications of (ultra) high-pressure homogenization. Trends in Food Science and Technology, 31, 13–26.Google Scholar
  15. Floury, J., Desrumaux, A., Axelos, M. A. V., & Legrand, J. (2002). Degradation of methylcellulose during ultra-high pressure homogenisation. Food Hydrocolloids, 16, 47–53.CrossRefGoogle Scholar
  16. Floury, J., Bellettre, J., Legrand, J., & Desruaux, A. (2004). Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chemical Engineering Science, 59, 843–853.CrossRefGoogle Scholar
  17. Granato, D., Calado, V. M. A., & Jarvis, B. (2014). Observations on the use of statistical methods in food science and technology. Food Research International, 55, 137–149.CrossRefGoogle Scholar
  18. Harte, F., & Venegas, R. (2010). A model for viscosity reduction in polysaccharides subjected to high-pressure homogenization. Journal of Texture Studies, 41(1), 49–61.CrossRefGoogle Scholar
  19. Kimball, D., Braddock, R., & Parish, M. E. (2005). Oranges and tangerines. In D. M. Edition Barrett, L. P. Somogyi, S. Hosahalli, & H. S. Ramaswamy (Eds.), Processing Fruits, Science and Technology (2nd ed.). Boca Raton: CRC Press.Google Scholar
  20. Kubo, M. T. K., Augusto, P. E. D., & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Research International, 51, 170–179.CrossRefGoogle Scholar
  21. Lacroix, N., Fliss, I., & Maklouf, J. (2005). Inactivation of pectin methylesterase and stabilization of opalescence in orange juice by dynamic high pressure. Food Research International, 38, 569–576.CrossRefGoogle Scholar
  22. Lagoueyte, N., & Paquin, P. (1998). Effects of microfluidization on the functional properties of xanthan gum. Food Hydrocolloids, 12(3), 365–371.CrossRefGoogle Scholar
  23. Leite, T. S., Augusto, P. E. D., & Cristianini, M. (2014). The use of high pressure homogenization (HPH) to reduce consistency of concentrated orange juice (COJ). Innovative Food Science & Emerging Technologies, 26, 124–133.CrossRefGoogle Scholar
  24. Leite, T. S., Augusto, P. E. D., & Cristianini, M. (2015). Processing frozen concentrated orange juice (FCOJ) by high pressure homogenization (HPH) technology: changes in the viscoelastic properties. Food Engineering Reviews, 7(2), 231–240.CrossRefGoogle Scholar
  25. Lopez-Sanchez, P., Nijsse, J., Blonk, H. C. G., Bialek, L., Schumm, S., & Langton, M. (2011). Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. Journal of the Science of Food and Agriculture, 91, 207–217.CrossRefGoogle Scholar
  26. Okoth, M. W., Kaahwa, A. R., & Imungi, J. K. (2000). The effect of homogenisation, stabiliser and amylase on cloudiness of passion fruit juice. Food Control, 11, 305–311.CrossRefGoogle Scholar
  27. Paquin, P. (1999). Technological properties of high pressure homogenisers: the effect of fat globules, milk proteins, and polysaccharides. International Dairy Journal, 9, 329–335.CrossRefGoogle Scholar
  28. Pinho, C. R. G., Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2011). Effect of high pressure homogenization process on Bacillus stearothermophilus and Clostridium sporogenes spores in skim Milk. Procedia Food Science, 1, 869–873.CrossRefGoogle Scholar
  29. Poliseli-Scopel, F. H., Hernández-Herrero, M., Guamis, B., & Ferragut, V. (2012). Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT - Food Science and Technology, 46(1), 42–48.CrossRefGoogle Scholar
  30. Porto, B. C., Augusto, P. E. D., Terekhov, A., Hamaker, B. R., & Cristianini, M. (2015). Effect of dynamic high pressure on technological properties of cashew tree gum (Anacardium occidentale L.). Carbohydrate Polymers, 129, 187–193.CrossRefGoogle Scholar
  31. Rega, B., Fournier, N., Nicklaus, S., & Guichard, E. (2004). Role of pulp in flavor release and sensory perception in orange juice. Journal of Agricultural and Food Chemistry, 52, 4204–4212.CrossRefGoogle Scholar
  32. Rodrigo, D., van Loey, A., & Hendrickx, M. (2007). Combined thermal and high pressure colour degradation of tomato puree and strawberry juice. Journal of Food Engineering, 79, 553–560.CrossRefGoogle Scholar
  33. Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2006). Nutritional characterisation of commercial traditional pasteurised tomato juices: carotenoids, vitamin C and radical-scavenging capacity. Food Chemistry, 98, 749–756.CrossRefGoogle Scholar
  34. Sentandreu, E., Gurrea, M. C., Betoret, N., & Navarro, J. L. (2011). Changes in orange juice characteristics due to homogenization and centrifugation. Journal of Food Engineering, 105, 241–245.CrossRefGoogle Scholar
  35. Servais, C., Jones, R., & Roberts, I. (2002). The influence of the particle size distribution on the processing of food. Journal of Food Engineering, 51, 201–208.CrossRefGoogle Scholar
  36. Silva, V. M., Sato, A. C. K., Barbosa, G., Dacanal, G., Ciro-Velásquez, H. J., & Cunha, R. L. (2010). The effect of homogenisation on the stability of pineapple pulp. International Journal of Food Science and Technology, 45, 2127–2133.CrossRefGoogle Scholar
  37. Tribst, A. A. L., Augusto, P. E. D., & Cristianini, M. (2013). Multi-pass high pressure homogenization of commercial enzymes: effect on the activities of glucose oxidase, neutral protease and amyloglucosidase at different temperatures. Innovative Food Science & Emerging Technologies, 18, 83–88.CrossRefGoogle Scholar
  38. Wang, Y., Dong Li, D., Wang, L., & Xuec, J. (2011). Effects of high pressure homogenization on rheological properties of flaxseed gum. Carbohydrate Polymers, 83, 489–494.CrossRefGoogle Scholar
  39. Wang, B., Li, D., Wang, L. J., Liu, Y. H., & Adhikari, B. (2012a). Effect of high-pressure homogenization on microstructure and rheological properties of alkali-treated highamylose maize stach. Journal of Food Engineering, 113, 61–68.CrossRefGoogle Scholar
  40. Wang, T., Sun, X., Zhou, Z., & Chen, G. (2012b). Effects of microfluidization process on physicochemical properties of wheat bran. Food Research International, 48, 742–747.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Thiago Soares Leite
    • 1
  • Pedro E. D. Augusto
    • 2
  • Marcelo Cristianini
    • 1
    Email author
  1. 1.Department of Food Technology (DTA), School of Food Engineering (FEA)University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ)University of São Paulo (USP)PiracicabaBrazil

Personalised recommendations