Advertisement

Food and Bioprocess Technology

, Volume 9, Issue 6, pp 924–935 | Cite as

Evaluation of Alternative Preservation Treatments (Water Heat Treatment, Ultrasounds, Thermosonication and UV-C Radiation) to Improve Safety and Quality of Whole Tomato

  • Joaquina C. Pinheiro
  • Carla S. M. Alegria
  • Marta M. M. N. Abreu
  • Elsa M. Gonçalves
  • Cristina L. M. Silva
Original Paper

Abstract

Previously optimised postharvest treatments were compared to conventional chlorinated water treatment in terms of their effects on the overall quality of tomato (‘Zinac’) during storage at 10 °C. The treatments in question were water heat treatment (WHT = 40 °C, 30 min), ultrasounds (US = 45 kHz, 80 %, 30 min), thermosonication (TS = 40 °C, 30 min, 45 kHz, 80 %) and ultraviolet irradiation (UV-C: 0.97 kJ m−2). The quality factors evaluated were colour, texture, sensorial analysis, mass loss, antioxidant capacity, total phenolic content, peroxidase and pectin methylesterase enzymatic activities, and microbial load reduction. The results demonstrate that all treatments tested preserve tomato quality to some extent during storage at 10 °C. WHT, TS and UV-C proved to be more efficient on minimising colour and texture changes with the additional advantage of microbial load reduction, leading to a shelf life extension when compared to control trials. However, at the end of storage, with exception of WHT samples, the antioxidant activity and phenolic content of treated samples was lower than for control samples. Moreover, sensorial results were well correlated with instrumental colour experimental data. This study presents alternative postharvest technologies that improve tomato (Zinac) quality during shelf life period and minimise the negative impact of conventional chlorinated water on human safety, health and environment.

Keywords

Water heat treatment Ultrasounds Thermosonication Ultraviolet radiation Tomato Postharvest quality 

Notes

Acknowledgments

The author Joaquina Pinheiro gratefully acknowledges her Ph. D. grant (SFRH/BD/24913/2005) to Fundação para a Ciência e a Tecnologia (FCT) from Ministério da Ciência e do Ensino Superior (Portugal). Moreover, the authors greatly acknowledge the technical assistance of Maria do Carmo and Ana Magalhães for helping in performing the microbial analysis. This work was supported by National Funds from FCT through project PEst-OE/EQB/LA0016/2011.

References

  1. Abreu, M., Alegria, C., Gonçalves, E. M., Pinheiro, J., Moldão-Martins, M., & Empis, J. (2011). Modelling of preheat treatment optimization applied to fresh-cut “Rocha” pear. Journal of Food Quality, 34(5), 315–326.CrossRefGoogle Scholar
  2. Abu-Goukh, A. B. A., & Bashir, H. A. (2003). Changes in pectic enzymes and cellulase activity during guava fruit ripening. Food Chemistry, 83, 213–218.CrossRefGoogle Scholar
  3. Acedo, A. L. (1997). Storage life of vegetables in simple evaporative coolers. Tropical Science, 37, 169–175.Google Scholar
  4. Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507.CrossRefGoogle Scholar
  5. Alexandre, E. M. C., Santos-Pedro, D. M., Brandão, T. R. S., & Silva, C. L. M. (2011). Study on thermosonication and ultraviolet radiation processes as an alternative to blanching for some fruits and vegetables. Food Bioprocess Technology, 4, 1012–1019.CrossRefGoogle Scholar
  6. Ali, Z. M., Chin, L. H., & Lazan, H. A. (2004). Comparative study on wall degrading enzymes, pectin modifications and softening during ripening of selected tropical fruits. Plant Science, 167, 317–327.CrossRefGoogle Scholar
  7. Alia-Tejacal, I., Villanueva-Arce, R., Pelayo-Zaldívar, C., Colinas-Léon, M. T., López-Martínez, V., & Bautista-Baños, S. (2007). Postharvest physiology and technology of sapote mamey fruit (Pouteria sapota (jacq.) H.E. Moore & Stearn). Postharvest Biology and Technology, 45, 285–297.CrossRefGoogle Scholar
  8. Assi, N. M. E. (2004). Alleviating chilling injury and maintaining quality of tomato fruit by hot water treatment. Emirates Journal of Agricultural Science,16(1), 1–7.Google Scholar
  9. Barka, E. A., Kalantari, S., Malhlouf, J., & Arul, J. (2000). Impact of UV-C irradiation on the cell wall-degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit. Journal of Agricultural and Food Chemistry, 48, 667–671.CrossRefGoogle Scholar
  10. Barka, M., Mercier, J., Corcuff, R., Castaigne, F., & Arul, J. (1999). Photochemical treatment to improve storability of fresh strawberries. Journal of Food Science, 64, 1068–1072.CrossRefGoogle Scholar
  11. Bartz, J. A., Eayre, C. G., Mahovic, M. J., Concelmo, D. E., Brecht, J. K., & Sargent, S. A. (2001). Chlorine concentration and the inoculation of tomato fruit in packinghouse dump tanks. Plant disease, 85, 885–889.CrossRefGoogle Scholar
  12. Bolton, J. R., & Linden, K. G. (2003). Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 129, 209–215.CrossRefGoogle Scholar
  13. Brat, P., Georgé, S., Bellanmy, A., Chaffaut, L. D., Scalbert, A., & Mennen, L. (2006). Daily polyphenol intake in France from fruits and vegetables. Journal of Nutrition, 136, 2368–2373.Google Scholar
  14. Brodl, M. R. (1989). Regulation of the synthesis of normal cellular proteins during heat shock. Physiology Plant, 75, 439–443.CrossRefGoogle Scholar
  15. Cano, A., Acosta, M., & Arnao, M. (2003). Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biology and Technology, 28, 59–65.CrossRefGoogle Scholar
  16. Chang-hong, L., Lu-yun, C., Xian-ying, L., Xiao-xu, H., & Tie-jin, Y. (2012). Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. Agricultural Sciences in China, 11(1), 159–165.Google Scholar
  17. Dávila-Aviña, J. E. J., Villa-Rodríguez, J., Cruz-Valenzuela, R., Rodríguez-Armenta, M., Espino-Díaz, M., Ayala-Zavala, J. F., et al. (2011). Effect of edible coatings, storage time and maturity stage on overall quality of tomato fruits. American Journal of Agricultural and Biological Sciences, 6(1), 162–171.CrossRefGoogle Scholar
  18. Dillard, C., & German, B. (2000). Phytochemicals: nutraceuticals and human health. Journal of the Science of Food and Agriculture, 80, 1744–1756.CrossRefGoogle Scholar
  19. Felkey, K., Archer, D. L., Bartz, J. A., Goodrich, R. M., & Schneider, K. A. (2006). Chlorine disinfection of tomato surface wounds contaminated with Salmonella spp. Hortechnology, 16(2), 253–256.Google Scholar
  20. Forney, C. F. (1995). Hot-water dips extend the shelf life of fresh broccoli. Hortscience, 30(5), 1054–1057.Google Scholar
  21. Georgé, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E., & Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chemistry, 124, 1603–1611.CrossRefGoogle Scholar
  22. Getinet, H., Seymour, T., & Woldetsadik, K. (2008). The effect of cultivar, maturity stage and storage environment on quality of tomatoes. Journal of Food Engineering, 87, 467–478.CrossRefGoogle Scholar
  23. Gil, M., Tomas-Barberan, F., Hess-Pierce, B., & Kader, A. (2002). Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarines, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry, 50, 4976–4982.CrossRefGoogle Scholar
  24. Guillén, F., Castillo, S., Zapata, P. J., Martínez-Romero, D., Valero, D., & Serrano, M. (2006). Efficacy of 1-MCP treatment in tomato fruit. 2—Effect of cultivar and ripening stage at harvest. Postharvest Biology and Technology, 42, 235–242.CrossRefGoogle Scholar
  25. Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biology and Technology, 51(2), 242–249.CrossRefGoogle Scholar
  26. ICMSF (1986). Microorganisms in Foods 2. Sampling for microbiological analysis: principles and specific applications (2nd Edition), Blackwell Scientific Publications. Toronto: University of Toronto Press. http://www.icmsf.org/pdf/icmsf2.pdf. Accessed 2 May 2013.
  27. ISO 13299 (1995). Sensory analysis—Methodology—General guidance for establishing a sensory profile.Google Scholar
  28. ISO 4833 (2003). Microbiology of food and animal feeding stuffs—Horizontal method for the enumeration of microorganisms—Colony-count technique at 30 °C.Google Scholar
  29. ISO 8586-1 (1993). Sensory analysis—General guidance for the selection, training and monitoring of assessors.Google Scholar
  30. Klee, H. J., & Giovannoni, J. J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 45, 41–59.CrossRefGoogle Scholar
  31. Macheix, J. J., Fleuriet, A., & Billot, J. (1990). Changes and metabolism of phenolic compounds in fruits. In Fruit Phenolics (pp. 149–221). Boca Raton, FL: CRC Press.Google Scholar
  32. Mari, M., Guizzardi, M., Brunelli, M., & Folchi, A. (1996). Postharvest biological control of grey mould (Botrytis cinerea Pers.: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Protection, 15(8), 699–705.CrossRefGoogle Scholar
  33. Mathooko, F. M. (2003). A comparative study of the response of tomato fruit to low temperature storage and modified atmosphere packaging. African Journal of Food, Agriculture, Nutrition and Development, 2, 34–41.Google Scholar
  34. Miranda, M. R. A., Silva, F. S., Figueiras, H. A. C., Alves, R. E. & Aráujo, N. C. C. (2002). Enzymes and pectin breakdown of sapodilla during modified atmosphere storage. Proceedings of the Interamerican Society for Tropical Horticulture, 45, 18–21.Google Scholar
  35. Morais, P. L. D., Lima, L. C. O., Miranda, M. R. A., Alves, R. E., & Silva, J. D. (2008). Enzyme activities and pectin breakdown of sapodilla submitted to 1-methylcyclopropene. Pesquisa Agropecuária Brasileira, 43(1), 15–20.CrossRefGoogle Scholar
  36. NP 3277 (1987). Microbiologia alimentar. Contagem de bolores e leveduras. Parte 1: Incubação a 37° C.Google Scholar
  37. Pal, R. K., Roy, S. K., & Srivastava, S. S. (1997). Storage performance of Kinnow mandarins in evaporative cool chamber and ambient conditions. Journal of Food Science and Technology, 34(3), 200–203.Google Scholar
  38. Pan, J., Vicente, A. R., Martinez, G. A., Chavez, A. R., & Civello, P. M. (2004). Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. Journal of Food Science and Agriculture, 84, 1831–1838.CrossRefGoogle Scholar
  39. Pinheiro, J., Alegria, C., Abreu, M., Gonçalves, E. M. & Silva, C. L. M. (2012d). Optimization, heat stability and kinetic characterization of pectin methyl esterase enzyme from tomato (Solanum lycopersicum ‘Zinac’) fruits. In: Editors Marita Cantwell and Domingos Almeida, Acta Horticulturae (ISHS- International Society for Horticultural Science) 934, 1283–1290.Google Scholar
  40. Pinheiro, J., Alegria, C., Abreu, M., Gonçalves, E. M., & Silva, C. L. M. (2013). Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv. ‘Zinac’) during storage. Journal of Food Engineering, 114, 338–345.CrossRefGoogle Scholar
  41. Pinheiro, J., Alegria, C., Abreu, M., Gonçalves, E. M. & Silva, C. L. M. (2012c). Efeito da termossonicação na qualidade de tomate (Solanum Lycopersicum, cv. ‘Zinac’) inteiro. Proceedings of the conference: 11° Encontro de Quimica dos Alimentos, Bragança, Portugal, 16 to 19 September.Google Scholar
  42. Pinheiro, J., Alegria, C., Abreu, M., Sol, M., Gonçalves, E. M. & Silva, C. L. M. (2012a). Impact of water heat treatment on physical-chemical, biochemical and microbiological quality of whole tomato (Solanum Lycopersicum) fruit. In: Editors Marita Cantwell and Domingos Almeida, Acta Horticulturae (ISHS-International Society for Horticultural Science) 934, 1269-1276.Google Scholar
  43. Pinheiro, J., Alegria, C., Abreu, M., Sol, M., Gonçalves, E. M. & Silva, C. L. M. (2010). Impact of UV-C radiation on tomato (Lycopersicum esculentum L., ‘Zinac’) quality and microbial load during refrigeration storage. Proceedings of First International Conference on Food Innovation 2010 (FOODINNOVA 2010), Valencia, Spain, 25-29 October.Google Scholar
  44. Pinheiro, J., Alegria, C., Abreu, M., Sol, M., Gonçalves, E. M. & Silva,. C. L. M. (2014). Postharvest quality of refrigerated tomato fruit (Solanum lycopersicum, ‘Zinac’) at two maturity stages following heat treatment. Journal of Food Processing and Preservation. doi: 10.1111/jfpp.12279.
  45. Pinheiro, J., Alegria, C., Abreu, M., Sol, M., Gonçalves, E. M. & Silva, C. L. M. (2012b) Optimization of ultrasounds preservation treatment applied to whole tomato (Solanum lycopersicum, ‘Zinac’)”. Proceedings of the conference: 16th World Congress of Food Science and Technology: “Addressing Global Food Security and Wellness through Food Science and Technology”, Foz do Iguaçu, Parana, Brazil, 5 to 9 August.Google Scholar
  46. Pombo, M. A., Dotto, M. C., Martínez, C. A., & Civello, P. M. (2009). UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest Biology and Technology, 51, 141–148.CrossRefGoogle Scholar
  47. Raffo, A., Leonardi, C., Fogliano, V., Ambrosino, P., Salucci, M., Gennaro, L., et al. (2002). Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. Journal of Agricultural and Food Chemistry, 50, 6550–6556.CrossRefGoogle Scholar
  48. Raffo, A., Malfa, G. L., Fogliano, V., Maiania, G., & Quaglia, G. (2006). Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). Journal of Food Composition and Analysis, 19, 11–19.CrossRefGoogle Scholar
  49. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9-10), 1231–1237.CrossRefGoogle Scholar
  50. Rivero, R. M., Ruiz, J. M., García, P. C., López-Lefebre, L. R., Sánchez, E., & Romero, L. (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160, 315–321.CrossRefGoogle Scholar
  51. Saltveit, M. E. (2005). Influence of heat shocks on the kinetics of chilling-induced ion leakage from tomato pericarp discs. Postharvest Biology and Technology, 36, 87–92.CrossRefGoogle Scholar
  52. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.Google Scholar
  53. Soto-Zamora, G., Yahia, E. M., Brecht, J. K., & Gardea, A. (2005). Effects of postharvest hot air treatments on the quality and antioxidant levels in tomato fruit. LWT – Food Science and Technology, 38(6), 657–663.CrossRefGoogle Scholar
  54. StatSoft Inc (2004). STATISTICA (data analysis software system), version 7. www.statsoft.com.
  55. Su, H., & Glubber, W. D. (2012). Effect of 1-methylcyclopropene (1-MCP) on reducing postharvest decay in tomatoes (Solanum lycopersicum L.). Postharvest Biology and Technology, 64(1), 133–137.CrossRefGoogle Scholar
  56. Temple, N. J. (2000). Antioxidants and disease: more questions than answers. Nutrition Research, 20, 449–459.CrossRefGoogle Scholar
  57. Thongsook, T., & Barrett, D. M. (2005). Heat inactivation and reactivation of broccoli peroxidase. Journal of Agricultural and Food Chemistry, 53, 3215–3222.CrossRefGoogle Scholar
  58. Unluturk, S., AtIlgan, M. R., Handan, B. A., & Tari, C. (2008). Use of UV-C radiation as a non-thermal process for liquid egg products (LEP). Journal of Food Engineering, 85(4), 561–568.CrossRefGoogle Scholar
  59. USDA. (1991). United States standard for grades of fresh tomatoes. United States Department of Agriculture. Washington DC, USDA: Agricultural Marketing Service.Google Scholar
  60. Van Dijk, C., Boeriu, C., Peter, F., Stolle-Smits, T., & Tijsken, L. M. M. (2006). The firmness of stored tomatoes (cv. Tradiro). 1. Kinetic and near infrared models to describe firmness and moisture loss. Journal of Food Engineering, 77, 575–584.CrossRefGoogle Scholar
  61. Vicente, A. R., Martínez, G. A., Civello, P. M., & Chaves, A. R. (2002). Quality of heat-treated strawberry fruit during refrigerated storage. Postharvest Biology and Technology, 25, 59–71.CrossRefGoogle Scholar
  62. Vicente, A. R., Peneda, C., Lemoine, L., Civello, P. M., Martinez, G. A., & Chaves, A. R. (2005). UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biology Technology, 35, 69–78.CrossRefGoogle Scholar
  63. Wills, R. B. H., Tirmazi, S. I. H., & Scott, K. J. (1977). Use of calcium to delay ripening of tomatoes. HortScience, 12, 551–552.Google Scholar
  64. Yahia, E. M., Soto-Zamora, G., Brecht, J. K., & Gardea, A. (2007). Postharvest hot air treatment effects on the antioxidant system in stored mature-green tomatoes. Postharvest Biology and Technology, 44, 107–115.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Joaquina C. Pinheiro
    • 1
  • Carla S. M. Alegria
    • 2
  • Marta M. M. N. Abreu
    • 2
  • Elsa M. Gonçalves
    • 2
  • Cristina L. M. Silva
    • 3
  1. 1.MARE – Marine and Environmental Sciences CentreInstituto Politécnico de LeiriaPenichePortugal
  2. 2.UEISTSA – Unidade Estratégica de Investigação e Serviços de Tecnologia e Segurança AlimentarInstituto Nacional de Investigação Agrária e VeterináriaLisbonPortugal
  3. 3.CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de BiotecnologiaUniversidade Católica Portuguesa/PortoPortoPortugal

Personalised recommendations