Food and Bioprocess Technology

, Volume 9, Issue 5, pp 872–881 | Cite as

Influence of Pretreatments on Quality Parameters and Nutritional Compounds of Dried Galega Kale (Brassica oleracea L. var. acephala)

  • Ana C. Araújo
  • Sara M. Oliveira
  • Inês N. Ramos
  • Teresa R. S. Brandão
  • Cristina L. M. Silva
Original Paper


The objective of this work was to evaluate the effect of six pretreatments on quality and nutritional contents of sliced Galega kale submitted to convective drying. Among all treatments, steam blanching was the most favourable, allowing improvements in retention of vitamin C, total antioxidant capacity and chlorophylls in comparison to the absence of pretreatment. Total phenolic losses were not reduced by steam blanching, but the retention was improved by combining this approach with a previous immersion in a metabisulphite solution. Moreover, steam blanching improved the colour parameters and appearance, providing a final dried product more similar to the fresh sample.


Galega kale Drying Pretreatments Nutrients Quality 



Sara M. Oliveira, Inês N. Ramos and Teresa R. S. Brandão gratefully acknowledge Fundação para a Ciência e a Tecnologia (FCT) and Fundo Social Europeu (FSE) for the financial support through the post-doctoral grants SFRH/BPD/74815/2010, SFRH/BPD/75430/2010 and SFRH/BPD/101179/2014, respectively. This work was supported by National Funds from FCT through project PEst-OE/EQB/LA0016/2013.


  1. Alibas, I. (2009). Microwave, vacuum, and air drying characteristics of collard leaves. Drying Technology, 27(11), 1266–1273. doi: 10.1080/07373930903267773.CrossRefGoogle Scholar
  2. Almeida, D., & Rosa, E. (1996). Protein and mineral concentration of Portuguese kale (Brassica oleracea var. Acephala) related to soil composition. Acta Horticulturae, 407, 269–276.CrossRefGoogle Scholar
  3. Ávila, I. M. L. B., & Silva, C. L. M. (1999). Modelling kinetics of thermal degradation of colour in peach puree. Journal of Food Engineering, 39, 161–166. doi: 10.1016/S0260-8774(98)00157-5.CrossRefGoogle Scholar
  4. Ayaz, F. A., Glew, R. H., Millson, M., Huang, H. S., Chuang, L. T., Sanz, C., & Hayırlıoglu-Ayaz, S. (2006). Nutrient contents of kale (Brassica oleracea L. var. Acephala DC.). Food Chemistry, 96(4), 572–579. doi: 10.1016/j.foodchem.2005.03.011.CrossRefGoogle Scholar
  5. Aydin, E., & Gocmen, D. (2015). The influences of drying method and metabisulfite pre-treatment on the color, functional properties and phenolic acids contents and bioaccessibility of pumpkin flour. LWT - Food Science and Technology, 60, 385–392. doi: 10.1016/j.lwt.2014.08.025.CrossRefGoogle Scholar
  6. Baron, A., Dénes, J. M., & Durier, C. (2006). High-pressure treatment of cloudy apple juice. LWT - Food Science and Technology, 39, 1005–1013. doi: 10.1016/j.lwt.2006.02.016.CrossRefGoogle Scholar
  7. Barreiro, J. A., Milano, M., & Sandoval, A. J. (1997). Kinetics of colour change of double concentrated tomato paste during thermal treatment. Journal of Food Engineering, 33(97), 359–371. doi: 10.1016/S0260-8774(97)00035-6.CrossRefGoogle Scholar
  8. Cui, Z.-W., Xu, S.-Y., & Sun, D.-W. (2004). Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves. Drying Technology, 22, 563–575. doi: 10.1081/DRT-120030001.CrossRefGoogle Scholar
  9. Deliza, R., Rosenthal, A., Abadio, F. B. D., Silva, C. H. O., & Castillo, C. (2005). Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. Journal of Food Engineering, 67, 241–246. doi: 10.1016/j.jfoodeng.2004.05.068.CrossRefGoogle Scholar
  10. Di Scala, K., Vega-Gálvez, A., Uribe, E., Oyanadel, R., Miranda, M., Vergara, J., Quispe, I., & Lemus-Mondaca, R. (2011). Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. International Journal of Food Science & Technology, 46(4), 746–753. doi: 10.1111/j.1365-2621.2011.02555.x.CrossRefGoogle Scholar
  11. DiPersioa, P. A., Kendalla, P. A., Yohan, Y., & Sofosb, J. N. (2007). Influence of modified blanching treatments on inactivation of Salmonella during drying and storage of carrot slices. Food Microbiology, 24(9), 500–507.CrossRefGoogle Scholar
  12. Fonseca, S. C., Oliveira, F. A., Frias, J. M., Brecht, J. K., & Chau, K. V. (2002). Modelling respiration rate of shredded Galega kale for development of modified atmosphere packaging. Journal of Food Engineering, 54(4), 299–307. doi: 10.1016/S0260-8774(01)00216-3.CrossRefGoogle Scholar
  13. Ibarz, A., Pagán, J., & Garza, S. (1999). Kinetic models for colour changes in pear puree during heating at relatively high temperatures. Journal of Food Engineering, 39, 415–422. doi: 10.1016/S0260-8774(99)00032-1.CrossRefGoogle Scholar
  14. Ihns, R., Diamante, L. M., Savage, G. P., & Vanhanen, L. (2011). Effect of temperature on the drying characteristics, colour, antioxidant and beta-carotene contents of two apricot varieties. International Journal of Food Science & Technology, 46(2), 275–283. doi: 10.1111/j.1365-2621.2010.02506.x.CrossRefGoogle Scholar
  15. Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables—the millennium’s health. International Journal of Food Science and Technology, 36, 703–725. doi: 10.1046/j.1365-2621.2001.00513.x.CrossRefGoogle Scholar
  16. Kopeć, A., Cieslik, E., Leszczynska, T., Filipiak-Florkiewicz, A., Wielgos, B., Piatkowska, E., Bodzich, A., & Grzych-Tuleja, E. (2013). Assessment of polyphenols, beta-carotene, and vitamin C intake with daily diets by primary school children. Ecology of Food and Nutrition, 52, 21–33. doi: 10.1080/03670244.2012.705766.CrossRefGoogle Scholar
  17. Korus, A. (2011a). Effect of preliminary and technological treatments on the contents of chlorophylls and caratenoids in kale (Brassica oleracea L. var. Acephala). Journal of Food Processing and Preservation, 37, 335–344. doi: 10.1111/j.1745-4549.2011.00653.x.CrossRefGoogle Scholar
  18. Korus, A. (2011b). Effect of preliminary processing, method of drying and storage temperature on the level of antioxidants in kale (Brassica oleracea L. var. Acephala) leaves. LWT - Food Science and Technology, 44(8), 1711–1716. doi: 10.1016/j.lwt.2011.03.014.CrossRefGoogle Scholar
  19. Kou, Y., Molitor, P. F., & Schmidt, S. J. (1999). Mobility and stability characterization of model food systems using NMR, DSC, and conidia germination techniques. Journal of Food Science, 64(6), 950–959. doi: 10.1111/j.1365-2621.1999.tb12258.x.CrossRefGoogle Scholar
  20. Landete, J. M. (2013). Dietary intake of natural antioxidants: vitamins and polyphenols. Critical Reviews in Food Science and Nutrition, 53, 706–721. doi: 10.1080/10408398.2011.555018.CrossRefGoogle Scholar
  21. Lichtenthaler, H. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.CrossRefGoogle Scholar
  22. Lozano, J. E., & Ibarz, A. (1997). Colour changes in concentrated fruit pulp during heating at high temperatures. Journal of Food Engineering, 31, 365–373. doi: 10.1016/S0260-8774(96)00079-9.CrossRefGoogle Scholar
  23. Maharaj, V., & Sankat, C. K. (1996). Quality changes in dehydrated dasheen leaves: effects of blanching pre-treatments and drying conditions. Food Research International, 29(5), 563–568. doi: 10.1016/S0963-9969(96)00021-X.CrossRefGoogle Scholar
  24. Maltini, E., Torreggiani, D., Venir, E., & Bertolo, G. (2003). Water activity and the preservation of plant foods. Food Chemistry, 82, 79–86. doi: 10.1016/S0308-8146(02)00581-2.CrossRefGoogle Scholar
  25. Martínez, S., Olmos, I., Carballo, J., & Franco, I. (2010). Quality parameters of Brassica spp. grown in northwest Spain. International Journal of Food Science and Technology, 45, 776–783. doi: 10.1111/j.1365-2621.2010.02198.x.CrossRefGoogle Scholar
  26. Mwithiga, G., & Olwal, J. O. (2005). The drying kinetics of kale (Brassica oleracea) in a convective hot air dryer. Journal of Food Engineering, 71, 373–378. doi: 10.1016/j.jfoodeng.2004.10.041.CrossRefGoogle Scholar
  27. Ndiaye, C., Xu, S. Y., & Wang, Z. (2009). Steam blanching effect on polyphenoloxidase, peroxidase and colour of mango (Mangifera indica L.) slices. Food Chemistry, 113(1), 92–95. doi: 10.1016/j.foodchem.2008.07.027.CrossRefGoogle Scholar
  28. Negi, P. S., & Roy, S. K. (2001). The effect of blanching on quality attributes of dehydrated carrots during long-term storage. European Food Research and Technology, 212, 445–448. doi: 10.1007/s002170000279.CrossRefGoogle Scholar
  29. Nicoleti, J. F., Silveira, V., Telis-Romero, J., & Telis, V. R. N. (2007). Influence of drying conditions on ascorbic acid during convective drying of whole persimmons. Drying Technology, 25, 891–899. doi: 10.1080/07373930701370365.CrossRefGoogle Scholar
  30. Nicoli, M., Elizalde, B., Pittotti, A., & Lerici, C. (1991). Effect of sugars and Maillard reaction products on polyphenol oxidase activity in food. Journal of Food Biochemistry, 15, 169–184.CrossRefGoogle Scholar
  31. Nicoli, M. C., Anese, M., Manzocco, L., & Lerici, C. R. (1997). Antioxidant properties of coffee brews in relation to the roasting degree. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 30, 292–297. doi: 10.1006/fstl.1996.0181.CrossRefGoogle Scholar
  32. Nindo, C. I., Sun, T., Wang, S. W., Tang, J., & Powers, J. R. (2003). Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis, L.). LWT - Food Science and Technology, 36, 507–516. doi: 10.1016/S0023-6438(03)00046-X.CrossRefGoogle Scholar
  33. Oliveira, S. M., Brandão, T. R. S., & Silva, C. L. M. (2015). Influence of drying processes and pretreatments on nutritional and bioactive characteristics of dried vegetables: a review. Food Engineering Reviews, Available online. doi: 10.1007/s12393-015-9124-0.
  34. Onayemi, O., & Badifu, G. I. O. (1987). Effect of blanching and drying methods on the nutritional and sensory quality of leafy vegetables. Plant Foods for Human Nutrition, 37, 291–298. doi: 10.1007/BF01092204.CrossRefGoogle Scholar
  35. Podsędek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT - Food Science and Technology, 40, 1–11. doi: 10.1016/j.lwt.2005.07.023.CrossRefGoogle Scholar
  36. Potisate, Y., & Phoungchandang, S. (2010). Chlorophyll retention and drying characteristics of ivy gourd leaf (Coccinia grandis Voigt) using tray and heat pump-assisted dehumidified air drying. Drying Technology, 28(6), 786–797. doi: 10.1080/07373937.2010.482698.CrossRefGoogle Scholar
  37. Rahman, M. S. (2010). Food stability determination by macro–micro region concept in the state diagram and by defining a critical temperature. Journal of Food Engineering, 99(4), 402–416. doi: 10.1016/j.jfoodeng.2009.07.011.CrossRefGoogle Scholar
  38. Sablani, S. S., Kasapis, S., & Rahman, M. S. (2007). Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, 78, 266–271. doi: 10.1016/j.jfoodeng.2005.09.025.CrossRefGoogle Scholar
  39. Serratosa, M. P., Marquez, A., Lopez-toledano, A., Medina, M., & Merida, J. (2011). Differences in browning index and CIELAB coordinates of the two grape drying processes, traditional sun-drying and chamber-drying and during the ageing of Pedro Ximenez sweet wine. Journal of Life Sciences, 5, 974–980.Google Scholar
  40. Sigge, G. O., Hansmann, C. F., & Joubert, E. (2001). Effect of storage conditions, packaging material and metabisulphite treatment on the color of dehydrated green bell peppers (Capsicum annuum L.). Journal of Food Quality, 24, 205–218. doi: 10.1111/j.1745-4557.2001.tb00603.x.CrossRefGoogle Scholar
  41. Singleton, V. L., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.Google Scholar
  42. Soong, Y. Y., & Barlow, P. J. (2004). Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, 88, 411–417. doi: 10.1016/j.foodchem.2004.02.003.CrossRefGoogle Scholar
  43. Tomaino, A., Cimino, F., Zimbalatti, V., Venuti, V., Sulfaro, V., De Pasquale, A., & Saija, A. (2005). Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chemistry, 89, 549–554. doi: 10.1016/j.foodchem.2004.03.011.CrossRefGoogle Scholar
  44. Vega-Gálvez, A., Lemus-Mondaca, R., Bilbao-Sáinz, C., Fito, P., & Andrés, A. (2008). Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). Journal of Food Engineering, 85, 42–50. doi: 10.1016/j.jfoodeng.2007.06.032.CrossRefGoogle Scholar
  45. Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647–653. doi: 10.1016/j.foodchem.2009.04.066.CrossRefGoogle Scholar
  46. Zapata, S., & Dufour, J. (1992). Ascorbic, dehydroascorbic and isoascorbic acid simultaneous determinations by reverse phase ion interaction HPLC. Journal of Food Science, 57, 506–511.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ana C. Araújo
    • 1
  • Sara M. Oliveira
    • 1
  • Inês N. Ramos
    • 1
  • Teresa R. S. Brandão
    • 1
  • Cristina L. M. Silva
    • 1
  1. 1.CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de BiotecnologiaUniversidade Católica Portuguesa/PortoPortoPortugal

Personalised recommendations