Food and Bioprocess Technology

, Volume 9, Issue 3, pp 396–406 | Cite as

Characterization of Valuable Compounds from Winter Melon (Benincasa hispida (Thunb.) Cogn.) Seeds Using Supercritical Carbon Dioxide Extraction Combined with Pressure Swing Technique

  • Mandana Bimakr
  • Russly Abdul Rahman
  • Ali Ganjloo
  • Farah Saleena Taip
  • Noranizan Mohd Adzahan
  • Md Zaidul Islam Sarker
Original Paper


In this study, we describe the extraction of different valuable compounds from winter melon seeds using supercritical carbon dioxide extraction combined with pressure swing technique (SCE-PST). The effects of the extraction variables, namely pressure, holding time (HT), and continuous extraction time (CT), were optimized by response surface methodology (RSM) to maximize the crude extraction yield (CEY). The optimal conditions were at pressure of 181.35 bar, HT of 9.93 min, and CT of 50.14 min. Under these conditions, the experimental CEY was 235.70 ± 0.11 mg g−1 with a relatively strong antioxidant activity (64.42 ± 0.21 % inhibition of DPPH· radicals, 67.36 ± 0.34 % inhibition of ABTS·+ radicals) and considerable amount of phenolic compounds (42.77 ± 0.40 mg gallic acid equivalent/g extract). The high-performance liquid chromatography (HPLC) analysis revealed that the bioactive phenolic compounds increased significantly using PST (p < 0.05), where gallic acid had the highest concentration (0.688 ± 0.34 mg g−1). The extract obtained using optimal SCE-PST conditions contained more than 83.65 % total unsaturated fatty acids (UFAs) and linoleic acid accounted for 67.33 ± 0.22 % in the total extract. From the results, the SCE efficiency in terms of extract quantity and quality has been enhanced significantly applying PST. Finally, the results were compared with previous published findings using supercritical carbon dioxide, ultrasound-assisted, and Soxhlet extraction. It was found that higher CEY could be achieved using Soxhlet extraction even through the quality of SCE-PST extracts in terms of antioxidant activity and phenolic compounds was better.


Winter melon SCE-PST Antioxidant activity Phenolic compounds HPLC UFA 


  1. Al-Khalifa, A. S. (1996). Physicochemical characteristics, fatty acid composition, and lipoxygenase activity of crude pumpkin and melon seed oils. Journal of Agricultural and Food Chemistry, 44, 964–966.CrossRefGoogle Scholar
  2. Al-Naqeeb, G., Ismail, M., & Al-Zubairi, A. S. (2009). Fatty acid profile, α-tocopherol content and total antioxidant activity of oil extracted from Nigella sativa seeds. International Journal of Pharmacology, 5, 244–250.CrossRefGoogle Scholar
  3. Bas, D., & Boyaci, I. H. (2007). Modeling and optimization I, usability of response surface methodology. Journal of Food Engineering, 78, 836–845.CrossRefGoogle Scholar
  4. Bhattacharjee, P., Singhal, R. S., & Tiwari, S. R. (2007). Supercritical carbon dioxide extraction of cottonseed oil. Journal of Food Engineering, 79, 892–898.CrossRefGoogle Scholar
  5. Bimakr, M., Rahman, R. A., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., & Ganjloo, A. (2012). Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules, 7, 11748–11762.CrossRefGoogle Scholar
  6. Bimakr, M., Rahman, R. A., Taip, F. S., Adzahan, N. M., Sarker, M. Z. I., & Ganjloo, A. (2013). Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition. Molecules, 18, 997–1014.CrossRefGoogle Scholar
  7. Cao, X., & Ito, Y. (2003). Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromatography. Journal of Chromatography A, 1021, 117–124.CrossRefGoogle Scholar
  8. Ensminger, M. E., Oldfield, J. E., & Heinemann, W. W. (1990). Feeds and nutrition. 2nd edition. Ensminger, ClovisGoogle Scholar
  9. Kazzazi, H., Rezaei, K., Ghotb-Sharif, S. J., Emam-Djomeh, Z., & Yamini, Y. (2007). Supercritical fluid extraction of flavors and fragrances from Hyssopus officinalis L. cultivated in Iran. Food Chemistry, 105, 805–811.CrossRefGoogle Scholar
  10. Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119, 851–858.CrossRefGoogle Scholar
  11. Lee, W. Y., Cho, Y. J., Oh, S. L., Park, J. H., Cha, W. S., Jung, J. Y., & Choi, Y. H. (2000). Extraction of grape seed oil by supercritical CO2 and ethanol modifier. Food Science and Biotechnology, 9, 174–178.Google Scholar
  12. Liu, G., Xu, X., Hao, Q., & Gao, Y. (2009). Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT--Food Science and Technology, 42, 1491–1495.CrossRefGoogle Scholar
  13. Liyana-Pathirana, C., & Shahidi, F. (2005). Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 93, 47–56.CrossRefGoogle Scholar
  14. Liza, M. S., Abdul Rahman, R., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I. S. M., & Hamid, S. (2010). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing, 88, 319–326.CrossRefGoogle Scholar
  15. Luengthanaphol, S., Mongkholkhajornsilp, D., Douglas, S., Douglas, P. L., Pengsopa, L., & Pongamphai, S. (2004). Extraction of antioxidants from sweet Thai tamarind seed coat—preliminary experiments. Journal of Food Engineering, 63, 247–252.CrossRefGoogle Scholar
  16. Machmudah, S., Kawahito, Y., Sasaki, M., & Goto, M. (2007). Supercritical CO2 extraction of rosehip seed oil: fatty acids composition and process optimization. Journal of Supercritical Fluids, 41, 421–428.CrossRefGoogle Scholar
  17. Mandana, B., Russly, A. R., Farah, S. T., Noranizan, M. A., Zaidul, I. S., & Ali, G. (2012). Antioxidant activity of winter melon (Benincasa hispida) seeds using conventional Soxhlet extraction technique. International Food Research Journal, 19, 229–234.Google Scholar
  18. Mariod, A. A., Ahmed, Y. M., Matthäus, B., Khaleel, G., Siddig, A., Gabra, A. M., & Abdelwahab, S. I. (2009). A comparative study of the properties of six Sudanese cucurbit seeds and seed oils. Journal of the American Oil Chemists' Society, 86, 1181–1188.CrossRefGoogle Scholar
  19. Martinez, J. L. (2008). Supercritical fluid extraction of nutraceuticals and bioactive compounds. New York: United States of America, CRC Press.Google Scholar
  20. Mingyu, D., Mingzhang, L., Qinghong, Y., Weiming, F., Jianxiang, X., & Weiming, X. (1995). A study on Benincasa hispida contents effective for protection of kidney. Jiangsu Journal of Agricultural Sciences, 11, 46–52.Google Scholar
  21. Mirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2008). Effect of Arabic gum, xanthan gum and orange oil on flavour release from diluted orange beverage emulsion. Food Chemistry, 107, 1161–1172.Google Scholar
  22. Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New York: Wiley.Google Scholar
  23. Nyam, K. L., Tan, C. P., Lai, O. M., Long, K., & Che Man, Y. B. (2009). Physicochemical properties and bioactive compounds of selected seed oils. LWT - Food Science and Technology, 42, 1396–1403.CrossRefGoogle Scholar
  24. Oliveira, R., Rodrigues, M. F., & Bernardo-Gil, M. G. (2002). Characterization and supercritical carbon dioxide extraction of walnut oil. Journal of the American Oil Chemists' Society, 79, 225–230.CrossRefGoogle Scholar
  25. Rezaei, K., & Temelli, F. (2000). Using supercritical fluid chromatography to determine diffusion coefficients of lipids in supercritical CO2. Journal of Supercritical Fluids, 17, 35–44.CrossRefGoogle Scholar
  26. Rezzoug, S. A., Boutekedjiret, C., & Allaf, K. (2005). Optimization of operating conditions of rosemary essential oil extraction by a fast controlled pressure drop process using response surface methodology. Journal of Food Engineering, 71, 9–17.CrossRefGoogle Scholar
  27. Salto, S. (1995). Research activities on supercritical fluid science and technology in Japan—a review. Journal of Supercritical Fluids, 8, 177–204.CrossRefGoogle Scholar
  28. Sánchez-Vicente, Y., Cabañas, A., Renuncio, J. A. R., & Pando, C. (2009). Supercritical fluid extraction of peach (Prunus persica) seed oil using carbon dioxide and ethanol. Journal of Supercritical Fluids, 49, 167–173.CrossRefGoogle Scholar
  29. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.CrossRefGoogle Scholar
  30. Smith, R. L., Jr., Malaluan, R. M., Setianto, W. B., Inomata, H., & Arai, K. (2003). Separation of cashew (Anacardium occidentale L.) nut shell liquid with supercritical carbon dioxide. Bioresource Technology, 88, 1–7.CrossRefGoogle Scholar
  31. Stévigny, C., Rolle, L., Valentini, N., & Zeppa, G. (2007). Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. Journal of the Science of Food and Agriculture, 87, 2817–2822.CrossRefGoogle Scholar
  32. Thana, P., Machmudah, S., Goto, M., Sasaki, M., Pavasant, P., & Shotipruk, A. (2008). Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 99, 3110–3115.CrossRefGoogle Scholar
  33. Triveni, R., Shamala, T. R., & Rastogi, N. K. (2001). Optimised production and utilisation of exopolysaccharide from Agrobacterium radiobacter. Process Biochemistry, 36, 787–795.CrossRefGoogle Scholar
  34. Valcárcel, M., & Tena, M. T. (1997). Applications of supercritical fluid extraction in food analysis. Fresenius Journal of Analytical Chemistry, 358, 561–573.CrossRefGoogle Scholar
  35. Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science and Technology, 17, 300–312.CrossRefGoogle Scholar
  36. Wang, L., Yang, B., Du, X., & Yi, C. (2008). Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chemistry, 108, 737–741.CrossRefGoogle Scholar
  37. Wei, Z. J., Liao, M. A., Zhang, H. X., Liu, J., & Jiang, S. H. (2009). Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresource Technology, 100, 4214–4219.CrossRefGoogle Scholar
  38. Wilkinson, P., Leach, C., Ahsing, E. E., Hussain, N., Miller, G. J., & Millward, D. J. (2005). Influence of α-linolenic acid and fish-oil on markers of cardiovascular risk in subjects with an atherogenic lipoprotein phenotype. Atherosclerosis, 181, 115–124.CrossRefGoogle Scholar
  39. Zaidul, I. S. M., Norulaini, N. A. N., Omar, A. K. M., Sato, Y., & Smith, R. L., Jr. (2007). Separation of palm kernel oil from palm kernel with supercritical carbon dioxide using pressure swing technique. Journal of Food Engineering, 81, 419–428.CrossRefGoogle Scholar
  40. Zaini, N. A. M., Anwar, F., Hamid, A. A., & Saari, N. (2011). Kundur [Benincasa hispida (Thunb.) Cogn.]: a potential source for valuable nutrients and functional foods. Food Research International, 44, 2368–2376.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mandana Bimakr
    • 1
  • Russly Abdul Rahman
    • 1
    • 2
    • 3
  • Ali Ganjloo
    • 4
  • Farah Saleena Taip
    • 3
  • Noranizan Mohd Adzahan
    • 1
  • Md Zaidul Islam Sarker
    • 5
  1. 1.Department of Food Technology, Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Halal Product Research InstituteUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Process and Food Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Food Science and Technology, Faculty of AgricultureUniversity of ZanjanZanjanIran
  5. 5.Department of Pharmaceutical Technology, Faculty of PharmacyInternational Islamic Universiti MalaysiaKuntanMalaysia

Personalised recommendations