Food and Bioprocess Technology

, Volume 9, Issue 2, pp 320–330 | Cite as

Effects of Dynamic High-Pressure Microfluidization Treatment and the Presence of Quercetagetin on the Physical, Structural, Thermal, and Morphological Characteristics of Zein Nanoparticles

  • Cuixia Sun
  • Jie Yang
  • Fuguo Liu
  • Wei Yang
  • Fang Yuan
  • Yanxiang GaoEmail author
Original Paper


The effects of dynamic high-pressure microfluidization (DHPM) and the addition of quercetagetin on the physical, structural, thermal, and morphological characteristics of zein nanoparticles were investigated. The result of Fourier transform infrared spectroscopy revealed that DHPM treatment caused the structural changes of zein, and the primary interactions between zein and quercetagetin were hydrogen bond and hydrophobic effects. Both of the DHPM treatment and the addition of quercetagetin resulted in the decrease of fluorescence intensity, the improved thermal stability, and the reducing of α-helix and the increase of β-sheets as proved by fluorescence spectra, differential scanning calorimetry thermograms, and circular dichroism spectra, respectively. It was found that the combined DHPM treatment and the addition of quercetagetin with mass ratio of zein to quercetagetin of 40:1 exhibited the morphology of nanospheres with more compact structure and uniform particle distribution.


Zein Quercetagetin DHPM treatment Thermal behaviors Structural properties 



Financial support from the National Natural Science Foundation of China (No.31371835) is gratefully acknowledged.


  1. Cabra, V., Arreguin, R., Vazquez-Duhalt, R., & Farres, A. (2006). Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein. Biochimica ET Biophysica Acta (BBA)-Proteins and Proteomics, 1764(6), 1110–1118.CrossRefGoogle Scholar
  2. Chen, H., & Zhong, Q. (2014). Processes improving the dispersibility of spray-dried zein nanoparticles using sodium caseinate. Food Hydrocolloids, 35, 358–366.CrossRefGoogle Scholar
  3. Chen, J., Liang, R. H., Liu, W., Li, T., Liu, C. M., Wu, S. S., & Wang, Z. J. (2013a). Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties. Carbohydrate Polymers, 91(1), 175–182.CrossRefGoogle Scholar
  4. Chen, Y., Ye, R., & Liu, J. (2013b). Understanding of dispersion and aggregation of suspensions of zein nanoparticles in aqueous alcohol solutions after thermal treatment. Industrial Crops and Products, 50, 764–770.CrossRefGoogle Scholar
  5. Chen, J., Zheng, J., McClements, D. J., & Xiao, H. (2014). Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: preparation, characterization, and functional performance. Food Chemistry, 158, 466–472.CrossRefGoogle Scholar
  6. Cotin, S., Calliste, C. A., Mazeron, M. C., Hantz, S., Duroux, J. L., Rawlinson, W. D., et al. (2012). Eight flavonoids and their potential as inhibitors of human cytomegalovirus replication. Antiviral Research, 96(2), 181–186.CrossRefGoogle Scholar
  7. de Freitas, V., Carvalho, E., & Mateus, N. (2003). Study of carbohydrate influence on protein–tannin aggregation by nephelometry. Food Chemistry, 81(4), 503–509.CrossRefGoogle Scholar
  8. del Carmen Pinto, M., Duque, A. L., & Macías, P. (2010). Fluorescence spectroscopic study on the interaction of resveratrol with lipoxygenase. Journal of Molecular Structure, 980(1), 143–148.CrossRefGoogle Scholar
  9. Dissanayake, M., & Vasiljevic, T. (2009). Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. Journal of Dairy Science, 92, 1387–1397.CrossRefGoogle Scholar
  10. Dong, J., Sun, Q., & Wang, J. Y. (2004). Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials, 25(19), 4691–4697.CrossRefGoogle Scholar
  11. Elzoghby, A. O., Samy, W. M., & Elgindy, N. A. (2012). Protein-based nanocarriers as promising drug and gene delivery systems. Journal of Controlled Release, 161(1), 38–49.CrossRefGoogle Scholar
  12. Feijoo, S. C., Hayes, W. W., Watson, C. E., & Martin, J. H. (1997). Effects of microfluidizer® technology on Bacillus licheniformis spores in ice cream mix. Journal of Dairy Science, 80(9), 2184–2187.CrossRefGoogle Scholar
  13. Floury, J., Desrumaux, A., & Legrand, J. (2002). Effect of ultra-high pressure homogenization on structure and on rheological properties of soy protein stabilized emulsions. Journal of Food Science, 67, 3388–3395.CrossRefGoogle Scholar
  14. Gianazza, E., Viglienghi, V., Righetti, P. G., Salamini, F., & Soave, C. (1977). Amino acid composition of zein molecular components. Phytochemistry, 16(3), 315–317.CrossRefGoogle Scholar
  15. Gomez-Estaca, J., Balaguer, M. P., Gavara, R., & Hernandez-Munoz, P. (2012). Formation of zein nanoparticles by electrohydrodynamic atomization: effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocolloids, 28(1), 82–91.CrossRefGoogle Scholar
  16. Gong, Y., Hou, Z., Gao, Y., Xue, Y., Liu, X., & Liu, G. (2012). Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology. Food and Bioproducts Processing, 90(1), 9–16.CrossRefGoogle Scholar
  17. Grácia-Juliá, A., René, M., Cortés-Muñoz, M., Picart, L., López-Pedemonte, T., Chevalier, D., & Dumay, E. (2008). Effect of dynamic high pressure on whey protein aggregation: a comparison with the effect of continuous short-time thermal treatments. Food Hydrocolloids, 22(6), 1014–1032.CrossRefGoogle Scholar
  18. Hasni, I., Bourassa, P., Hamdani, S., Samson, G., Carpentier, R., & Tajmir-Riahi, H. A. (2011). Interaction of milk α- and β-caseins with tea polyphenols. Food Chemistry, 126(2), 630–639.CrossRefGoogle Scholar
  19. Hayakawa, I., Linko, Y. Y., & Linko, P. (1996). Mechanism of high pressure denaturation of proteins. LWT--Food Science and Technology, 29(8), 756–762.CrossRefGoogle Scholar
  20. Hu, X., Zhao, M., Sun, W., Zhao, G., & Ren, J. (2011). Effects of microfluidization treatment and transglutaminase cross-linking on physiochemical, functional, and conformational properties of peanut protein isolate. Journal of Agricultural and Food Chemistry, 59, 8886–8894.CrossRefGoogle Scholar
  21. Hu, D., Lin, C., Liu, L., Li, S., & Zhao, Y. (2012). Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids. Journal of Food Engineering, 109(3), 545–552.CrossRefGoogle Scholar
  22. Huang, X., Tu, Z., Jiang, Y., Xiao, H., Zhang, Q., & Wang, H. (2012). Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of lentinan. International Journal of Biological Macromolecules, 51(5), 926–932.CrossRefGoogle Scholar
  23. Huang, X., Tu, Z., Xiao, H., Li, Z., Zhang, Q., Wang, H., et al. (2013). Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid. Food and Bioproducts Processing, 91(1), 1–6.CrossRefGoogle Scholar
  24. Iordache, M., & Jelen, P. (2003). High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innovative Food Science & Emerging Technologies, 4(4), 367–376.CrossRefGoogle Scholar
  25. Joye, I. J., Davidov-Pardo, G., Ludescher, R. D., & McClements, D. J. (2015). Fluorescence quenching study of resveratrol binding to zein and gliadin: towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chemistry, 185, 261–267.CrossRefGoogle Scholar
  26. Keerati-u-rai, M., & Corredig, M. (2009). Effect of dynamic high pressure homogenization on the aggregation state of soy protein. Journal of Agricultural and Food Chemistry, 57, 3556–3562.CrossRefGoogle Scholar
  27. Keppler, J. K., Stuhldreier, M. C., Temps, F., & Schwarz, K. (2014). Influence of mathematical models and correction factors on binding results of polyphenols and retinol with β-lactoglobulin measured with fluorescence quenching. Food Biophysics, 9(2), 158–168.CrossRefGoogle Scholar
  28. Labuckas, D. O., Maestri, D. M., Perello, M., Martínez, M. L., & Lamarque, A. L. (2008). Phenolics from walnut (Juglans regia L.) kernels: antioxidant activity and interactions with proteins. Food Chemistry, 107(2), 607–612.CrossRefGoogle Scholar
  29. Lakowicz, J. R., & Masters, B. R. (2008). Principles of fluorescence spectroscopy. Journal of Biomedical Optics, 13(2), 9901.CrossRefGoogle Scholar
  30. Lee, L., Hancocks, R., Noble, I., & Norton, I. T. (2014). Production of water-in-oil nanoemulsions using high pressure homogenisation: a study on droplet break-up. Journal of Food Engineering, 131, 33–37.CrossRefGoogle Scholar
  31. Li, J., Wang, Y., Wei, X., Wang, F., Han, D., Wang, Q., & Kong, L. (2014). Homogeneous isolation of nanocelluloses by controlling the shearing force and pressure in microenvironment. Carbohydrate Polymers, 113, 388–393.CrossRefGoogle Scholar
  32. Liang, H., Zhou, B., He, L., An, Y., Lin, L., Li, Y., et al. (2015). Fabrication of zein/quaternized chitosan nanoparticles for encapsulation and protection of curcumin. RSC Advances, 5, 13891–13900.CrossRefGoogle Scholar
  33. Liu, W., Liu, J. H., Xie, M. Y., Liu, C. M., Liu, W. L., & Wan, J. (2009). Characterization and high-pressure microfluidization-induced activation of polyphenoloxidase from Chinese pear (Pyrus pyrifolia Nakai). Journal of Agricultural and Food Chemistry, 57, 5376–5380.CrossRefGoogle Scholar
  34. Liu, W., Zhang, Z.Q., Liu, C.M., Xie, M.Y., Liang, R.H., Liu, J.P., … & Wan, J. (2012). Effect of molecular patch modification on the stability of dynamic high‐pressure microfluidization treated trypsin. Innovative Food Science and Emerging Technologies, 16, 349–354.Google Scholar
  35. Lobley, A., Whitmore, L., & Wallace, B. A. (2002). DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics, 18(1), 211–212.CrossRefGoogle Scholar
  36. Luo, Y., Zhang, B., Whent, M., Yu, L. L., & Wang, Q. (2011). Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces, 85(2), 145–152.CrossRefGoogle Scholar
  37. Maa, Y. F., & Hsu, C. C. (1999). Performance of sonication and microfluidization for liquid-liquid emulsification. Pharmaceutical Development and Technology, 4(2), 233–240.CrossRefGoogle Scholar
  38. Mizutani, Y., Matsumura, Y., Imamura, K., Nakanishi, K., & Mori, T. (2003). Effects of water activity and lipid addition on secondary structure of zein in powder systems. Journal of Agricultural and Food Chemistry, 51(1), 229–235.CrossRefGoogle Scholar
  39. Murray, E. D., Arntfield, S. D., & Ismond, M. A. H. (1985). The influence of processing parameters on food protein functionality II. Factors affecting thermal properties as analyzed by differential scanning calorimetry. Canadian Institute of Food Science and Technology Journal, 18(2), 158–162.CrossRefGoogle Scholar
  40. Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., & Quek, S. Y. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein–gallic acid system. Food Chemistry, 136(2), 1013–1021.CrossRefGoogle Scholar
  41. Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25(5), 1000–1008.CrossRefGoogle Scholar
  42. Selling, G. W., Hamaker, S. A., & Sessa, D. J. (2007). Effect of solvent and temperature on secondary and tertiary structure of zein by circular dichroism. Cereal Chemistry, 84(3), 265–270.CrossRefGoogle Scholar
  43. Shen, L., & Tang, C. H. (2012). Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Research International, 48(1), 108–118.CrossRefGoogle Scholar
  44. Shpigelman, A., Israeli, G., & Livney, Y. D. (2010). Thermally-induced protein–polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocolloids, 24(8), 735–743.CrossRefGoogle Scholar
  45. Shukla, R., & Cheryan, M. (2001). Zein: the industrial protein from corn. Industrial Crops and Products, 13(3), 171–192.CrossRefGoogle Scholar
  46. Sreerama, N., & Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 287(2), 252–260.CrossRefGoogle Scholar
  47. Tang, C. H., & Liu, F. (2013). Cold, gel-like soy protein emulsions by microfluidization: emulsion characteristics, rheological and microstructural properties, and gelling mechanism. Food Hydrocolloids, 30(1), 61–72.CrossRefGoogle Scholar
  48. Venyaminov, S. Y., & Yang, J. T. (1996). Determination of protein secondary structure. In Circular dichroism and the conformational analysis of biomolecules (pp. 69–107). US: Springer.CrossRefGoogle Scholar
  49. Wang, T., Sun, X., Zhou, Z., & Chen, G. (2012). Effects of microfluidization process on physicochemical properties of wheat bran. Food Research International, 48(2), 742–747.CrossRefGoogle Scholar
  50. Wang, T., Raddatz, J., & Chen, G. (2013). Effects of microfluidization on antioxidant properties of wheat bran. Journal of Cereal Science, 58(3), 380–386.CrossRefGoogle Scholar
  51. Wang, L. J., Hu, Y. Q., Yin, S. W., Yang, X. Q., Lai, F. R., & Wang, S. Q. (2015). Fabrication and characterization of antioxidant Pickering emulsions stabilized by zein/chitosan complex particles. Journal of Agricultural and Food Chemistry, 63(9), 2514–2524.CrossRefGoogle Scholar
  52. Whitmore, L., & Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32(2), 668–673.CrossRefGoogle Scholar
  53. Wu, Y., Luo, Y., & Wang, Q. (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT--Food Science and Technology, 48(2), 283–290.CrossRefGoogle Scholar
  54. Xia, N., Wang, J. M., Gong, Q., Yang, X. Q., Yin, S. W., & Qi, J. R. (2012). Characterization and In Vitro digestibility of rice protein prepared by enzyme-assisted microfluidization: comparison to alkaline extraction. Journal of Cereal Science, 56(2), 482–489.CrossRefGoogle Scholar
  55. Zhai, J., Wooster, T. J., Hoffmann, S. V., Lee, T. H., Augustin, M. A., & Aguilar, M. I. (2011). Structural rearrangement of β-lactoglobulin at different oil–water interfaces and its effect on emulsion stability. Langmuir, 27(15), 9227–9236.CrossRefGoogle Scholar
  56. Zhang, J., Yan, Q., Liu, J., Lu, X., Zhu, Y., Wang, J., & Wang, S. (2013). Study of the interaction between 5-sulfosalicylic acid and bovine serum albumin by fluorescence spectroscopy. Journal of Luminescence, 134, 747–753.CrossRefGoogle Scholar
  57. Zheng, L. L., & Brennan, J. D. (1998). Measurement of intrinsic fluorescence to probe the conformational flexibility and thermodynamic stability of a single tryptophan protein entrapped in a sol–gel derived glass matrix. Analyst, 123(8), 1735–1744.CrossRefGoogle Scholar
  58. Zhong, Q., & Jin, M. (2009). Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocolloids, 23(8), 2380–2387.CrossRefGoogle Scholar
  59. Zhong, Q., Jin, M., Davidson, P. M., & Zivanovic, S. (2009a). Sustained release of lysozyme from zein microcapsules produced by a supercritical anti-solvent process. Food Chemistry, 115(2), 697–700.CrossRefGoogle Scholar
  60. Zhong, Q., Tian, H., & Zivanovic, S. (2009b). Encapsulation of fish oil in solid zein particles by liquid-liquid dispersion. Journal of Food Processing and Preservation, 33(2), 255–270.CrossRefGoogle Scholar
  61. Zhong, J., Tu, Y., Liu, W., Xu, Y., Liu, C., & Dun, R. (2014). Antigenicity and conformational changes of β-lactoglobulin by dynamic high pressure microfluidization combining with glycation treatment. Journal of Dairy Science, 97(8), 4695–4702.CrossRefGoogle Scholar
  62. Zou, T., Li, Z., Percival, S. S., Bonard, S., & Gu, L. (2012). Fabrication, characterization, and cytotoxicity evaluation of cranberry procyanidins-zein nanoparticles. Food Hydrocolloids, 27(2), 293–300.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Cuixia Sun
    • 1
  • Jie Yang
    • 1
  • Fuguo Liu
    • 1
  • Wei Yang
    • 1
  • Fang Yuan
    • 1
  • Yanxiang Gao
    • 1
    Email author
  1. 1.Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations