Advertisement

Food and Bioprocess Technology

, Volume 8, Issue 11, pp 2246–2255 | Cite as

Effects of Blanching on Flavanones and Microstructure of Citrus aurantium Peels

  • Malek Ben Zid
  • Claudie Dhuique-Mayer
  • Sihem BellaghaEmail author
  • Christine Sanier
  • Antoine Collignan
  • Adrien Servent
  • Manuel Dornier
Original Paper

Abstract

Water and steam blanching were investigated as pretreatments of bitter orange peels in order to modulate their bitterness before further formulation processing such as osmotic treatment and drying. The fruit pieces were water blanched at 95 °C for 10 min and at 85 °C for 60 min and steam blanched at atmospheric pressure during 5 min. The kinetics of water inflow and bitter flavanone losses were established from the variation of moisture and bitter compound contents during the blanching process. The whiteness and the citrus color indexes were adopted to evaluate respectively the color of the flavedo and the albedo. Thin sections of fresh and treated peels were resin embedded for light microscopy evaluation and optical porosity determination. Results revealed that water blanching could partially debitter the peels by removing about 38 and 48 % of bitter flavanones (naringin, neohesperidin, neoeriocitrin) respectively at 95 and 85 °C. The citrus color index and the whiteness index decreased during the process denoting a flavedo discoloring and an albedo darkening. By contrast, the steam blanching showed good retention of bitter compounds. The color of the flavedo was unaffected by steaming while the whiteness index decreased. At microscopic level, the water-blanched peels exhibited an extreme swelling of the cell walls and slight disintegration of the tissue. Contrariwise, the steam blanching maintained the structure of the peels and brought about the shrinkage of the albedo tissue and the decrease of porosity.

Keywords

Citrus peels Blanching Flavanones glycosides Porosity Structural changes 

References

  1. Aguilera, J. M., & Stanley, D. W. (1999). Microstructure and mass transfer: solid-liquid extraction. In Microstructural principles of food processing and engineering (pp. 325–372). Gaithersburg, Maryland: Aspen Publishers, Inc. A Wolters Kluwer Company.Google Scholar
  2. Akyildiz, A., & Ağçam, E. (2014). Citrus juices technology. In Food Processing: Strategies for Quality Assessment (pp. 36–103). New York: Springer.Google Scholar
  3. AOAC (1990). AOAC Official Method., 934.06.Google Scholar
  4. Artés, F., Mı’nguez, M. I., & Hornero, D. (2002). Analysing changes in fruit pigments. In Colour in Food: Improving Quality (pp. 248–282). England: Woodhead Publishing Limited.Google Scholar
  5. Berhow, M., Tisserat, B., Kanes, K., & Vandercook, C., (1998). Survey of phenolic compounds produced in citrus. In U. S. A. Department (Ed.): Agricultural Research Service.Google Scholar
  6. Bráncoli, N., Boylston, T., & Barbosa-Cánovas, G. V. (2000). Browning of apple slices treated with polysaccharide films. In Innovations in Food Processing (pp. 225–232): CRC Press LLC.Google Scholar
  7. Brecht, J. K., Ritenour, M. A., Haard, N. F., & Chism, G. W. (2007). Postharvest physiology of edible plant tissues. In Fennema's Food Chemistry, Fourth Edition (pp. 975–1050): CRC Press.Google Scholar
  8. Cháfer, M., González-Martinez, C., Chiralt, A., & Fito, P. (2003). Microstructure and vacuum impregnation response of citrus peels. Food Research International, 36(1), 35–41, doi:10.1016/S0963-9969(02)00105-9.
  9. Chemat, F. (2011). Techniques for oil extraction. In Citrus Essential Oils: Flavor and Fragrance (pp. 9–36): John Wiley & Sons.Google Scholar
  10. Cohn, R., & Cohn, A. L. (1996). The by-products of fruit processing. In Fruit Processing (pp. 196–220). London UK: Blackie Academic & Professional.CrossRefGoogle Scholar
  11. deMan, J. M. (1999). Carbohydrates. In Principles of Food Chemistry (pp. 163–208): Aspen Publishers.Google Scholar
  12. Dhuique-Mayer, C., Caris-Veyrat, C., Ollitrault, P., Curk, F., & Amiot, M. J. (2005). Varietal and interspecific influence on micronutrients contents from the Mediterranean area. Journal of Agricultural and Food Chemistry, 53, 2140–2145.CrossRefGoogle Scholar
  13. Dhuique-Mayer, C., Tbatou, M., Carail, M., Caris-Veyrat, C., Dornier, M., & Amiot, M. J. (2007). Thermal degradation of antioxydant micronutrients in citrus juice : kinetics and newly-formed compounds. Agricultural and Food Chemistry, 55, 4209–4216.CrossRefGoogle Scholar
  14. Di Giacomo, A., & Di Giacomo, G. (2003). Essential oil production. In Citrus: The Genus Citrus (pp. 114–147): CRC Press.Google Scholar
  15. Dincer, I. (1997). Food freezing. In Heat Transfer In Food Cooling Applications (pp. 77–108): Taylor & Francis.Google Scholar
  16. Evranuz, E. O., & Kilic-Akyilmaz, M. (2012). Material and energy balances. In Handbook of Food Process Design (pp. 39–73): Wiley-Blackwell.Google Scholar
  17. Fellows, P. J. (2009). Blanching. In Food Processing Technology: Principles and Practice (pp. 369–380): Woodhead Publishing in Food Science, Technology and Nutrition.Google Scholar
  18. Fleuriet, A., & Macheix, J. J. (2003). In Flavonoids in Health and Disease (Second ed., pp. 1–42): Marcel Dekker.Google Scholar
  19. Gupta, G. P. (2004). Mechanical events in cells. In Plant Cell Biology (pp. 69–100): Discovery Publishing House.Google Scholar
  20. Hasegawa, S., Berhow, M. A., & Fong, C. H. (1995). Analysis of bitter principles in citrus. In H. F. Linskens, & J. F. Jackson (Eds.), Modern Methods of Plant Analysis: New Series (Vol. 18, pp. 59–80): Springer-Verlag Berlin Heidelberg.Google Scholar
  21. Hermansson, A.-M. (2007). Structuring water by gelation. In J. M. Aguilera, & P. J. Lillford (Eds.), Food Materials Science: Principles and Practice (pp. 255–280). New York: Springer.Google Scholar
  22. Inglese, P., & Bellavia, G. P. (2012). The citrus in the Mediterranean region. In Integrated Control of Citrus Pests in the Mediterranean Region (pp. 3–18): Bentham Science Publishers.Google Scholar
  23. IPGRI (1999). Descriptors for citrus. Rome, Italy:International Plant Genetic Resources Institute.Google Scholar
  24. Kamil, K., & Ahmet, C. (2007). Transport phenomena during drying of food materials. In Focus on food engineering research and developments (pp. 13–164). New York: Nova Science Publishers.Google Scholar
  25. Ladanyia, M. (2010). Fruit morphology, anatomy and physiology. In Citrus Fruit: Biology, Technology and Evaluation (pp. 103–124): Elsevier Science.Google Scholar
  26. Lee, F. A. (1958). The blanching process. In Advances In Food Research (Vol. 8, pp. 62–111): Elsevier Science.Google Scholar
  27. Murphy, E. W., Criner, P. E., & Gray, B. C. (1975). Comparisons of methods for calculating retentions of nutrients in cooked foods. Journal of Agricultural and Food Chemistry, 23(6), 1153–1157. doi: 10.1021/jf60202a021.CrossRefGoogle Scholar
  28. Penfield, M. P., & Campbell, A. M. (2012). Fruits and vegetables. In T. P. Campbell (Ed.), Experimental Food Science (Third ed., pp. 294–330): Academic press.Google Scholar
  29. Philippon, J., & Rouet-Mayer, M. A. (1985). Blanchiment et qualité des légumes et des fruits surgelés. Revue. 2. Aspects sensoriels. International Journal of Refrigeration, 8(1), 48–53, doi:10.1016/0140-7007(85)90144-6.
  30. Pulley, G. N. (1936). Solubility of naringin in water. Industrial & Engineering Chemistry Analytical Edition, 8(5), 360–360, doi: 10.1021/ac50103a020.
  31. Rahman, M. S. (1999). Food preservation by freezing. In Handbook of Food Preservation (pp. 259–284): Marcel Dekker.Google Scholar
  32. Renard, C. M. G. C., & Maingonnat, J. F. (2012). Thermal processing of fruits and fruit juices. In D. W. Sun (Ed.), Thermal Food Processing: New Technologies and Quality Issues (second ed., pp. 413–440): Taylor & Francis.Google Scholar
  33. Sahin, S., & Sumnu, S. G. (2007). Size, shape, volume and related physical attributes. In Physical Properties of Foods (pp. 1–38): Springer.Google Scholar
  34. Schwendiman, J., Pannetier, C., & Michaux-Ferriere, N. (1988). Histologyof somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Annals of Botany, 62, 43–52.Google Scholar
  35. Shafiur, R. M., & Velez-Ruiz, J. F. (2007). Food preservation by freezing. In Handbook of Food Preservation (Second ed., pp. 635–666): Taylor & Francis.Google Scholar
  36. Shahidi, F., & Naczk, M. (2003). Contribution of phenolic compounds to flavor and color characteristics of foods. In Phenolics in Food and Nutraceuticals (pp. 443–482): CRC Press.Google Scholar
  37. Shils, M. E., & Shike, M. (2006). Nutrition, safety and quality. In Modern Nutrition in Health and Disease (pp. 1777–1788): Lippincott Williams & Wilkins.Google Scholar
  38. Sinha, R. K. (2004). Behavior of cells towards water. In Modern Plant Physiology (pp. 42–63): Alpha Science International.Google Scholar
  39. Spiegel-Roy, P., & Goldschmidt, E. E. (1996). Reproductive physiology: flowering and fruiting. In The Biology of Citrus (pp. 70–125): Cambridge University Press.Google Scholar
  40. Weatherspoon, L., Mosha, T., & Nnyepi, M. (2005). Nutrient loss. In Produce Degradation: Pathways and Prevention (pp. 223–266): Taylor & Francis.Google Scholar
  41. Weaver, C. M., & Daniel, J. R. (2003). The Food Chemistry Laboratory: A Manual for Experimental Foods, Dietetics, and Food Scientists. Second Edition:Taylor & Francis.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Malek Ben Zid
    • 1
  • Claudie Dhuique-Mayer
    • 2
  • Sihem Bellagha
    • 1
    Email author
  • Christine Sanier
    • 3
  • Antoine Collignan
    • 4
  • Adrien Servent
    • 2
  • Manuel Dornier
    • 4
  1. 1.Institut National Agronomique de TunisieTunisTunisia
  2. 2.CIRAD, UMR95 QualiSudMontpellier cedex 5France
  3. 3.CIRAD, UMR AGAPMontpellier cedex 5France
  4. 4.Montpellier SupAgro, UMR95 QualiSudMontpellier cedex 5France

Personalised recommendations