Advertisement

Food and Bioprocess Technology

, Volume 8, Issue 10, pp 2176–2181 | Cite as

Influence of Applied Pressure on Bioactive Compounds of Germinated Rough Rice (Oryza sativa L.)

  • Min Young Kim
  • Sang Hoon Lee
  • Gwi Yeong Jang
  • Meishan Li
  • Youn Ri Lee
  • Junsoo Lee
  • Heon Sang Jeong
Communication

Abstract

This study was conducted to investigate the effects of high hydrostatic pressure on the functional compounds of germinated rough rice. Rough rice was germinated at 37 °C over a 2-day period and then subjected to 0.1, 10, 30, 50, and 100 MPa for 24 h. Before-germination (BG) and after-germination (AG) samples were prepared and analyzed for functional compounds. The highest total polyphenol content (1.5 ± 0.2 mg/g) was found after 30 MPa. The highest γ-aminobutyric acid (GABA) content (111.4 ± 4.1 mg/g), total arabinoxylan content (5.4 ± 0.6 %), and γ-oryzanol content (46.1 ± 4.1 mg/100 g) were found after 50 MPa. Phytic acid decreased with pressure from 4.0 ± 0.1 mg/g (0.1 MPa) to 1.0 ± 0.1 mg/g (100 MPa). These results suggest that high hydrostatic pressure treatments may increase the functional properties of germinated rough rice.

Keywords

Germinated rough rice High hydrostatic pressure treatment Bioactive compounds 

Notes

Acknowledgments

This research was supported by the High Value-added Food Technology Development Program (112077-03-SB010), Ministry of Agriculture, Food and Rural Affairs.

References

  1. Cheftel, J. C. (1995). Review: high-pressure, microbial inactivation and food preservation. Food Science and Technology International, 1, 75–90.CrossRefGoogle Scholar
  2. Corrales, M., García, A. F., Butz, P., & Tauscher, B. (2009). Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering, 90, 415–421.CrossRefGoogle Scholar
  3. Dewanto, V., Wu, X., & Liu, R. H. (2002). Processed sweet corn has higher antioxidant activity. Journal of Agricultural Food Chemistry, 50, 4959–4964.CrossRefGoogle Scholar
  4. Douglas, S. G. (1981). A rapid method for the determination of pentosans in wheat flour. Food Chemistry, 7, 139–145.CrossRefGoogle Scholar
  5. Eom, H. S., & Lee, Y. T. (2008). Changes in solubility of barley arabinoxylans during malting. Journal of the Korean Society of Food Science and Nutrition, 37, 1684–1687.CrossRefGoogle Scholar
  6. Ferreira, A. R. F. C., Figueiredo, A. B., Evtuguin, D. V., & Saraiva, J. A. (2011). High pressure pretreatments promote higher rate and degree of enzymatic hydrolysis of cellulose. Green Chemistry, 13, 2764–2767.CrossRefGoogle Scholar
  7. Haug, W. G., & Lantzsch, H. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Chemistry, 34, 1423–1426.CrossRefGoogle Scholar
  8. Imsanguan, P., Roaysubtawee, A., Borirak, R., Pongamphai, S., Douglas, S., & Douglas, P. L. (2008). Extraction of α-tocopherol and γ-oryzanol from rice bran. LWT - Food Science and Technology, 41, 1417–1424.CrossRefGoogle Scholar
  9. Jun, X. (2009). Caffeine extraction from green tea leaves assisted by high pressure processing. Journal of Food Engineering, 94, 105–109.CrossRefGoogle Scholar
  10. Kang, M. Y., Lee, Y. R., & Nam, S. H. (2003). Characterization of the germinated rices to examine an application potentials as functional rice processed foods. Korean Journal of Food Science and Technology, 35, 696–701.Google Scholar
  11. Kim, H. Y., Hwang, I. G., Joung, E. M., Kim, T. M., Kim, D. J., Park, D. S., Lee, J., & Jeong, H. S. (2010). Antiproliferation effects of germinated-Korean rough rice extract on human cancer cells. Journal of the Korean Society of Food Science and Nutrition, 39, 325–330.CrossRefGoogle Scholar
  12. Kim, H. Y., Hwang, I. G., Kim, T. M., Park, D. S., Kim, J. H., Kim, D. J., Lee, Y. R., Lee, J., & Jeong, H. S. (2011a). Changes in chemical composition of rough rice (Oryza sativa L.) according to germination period. Journal of the Korean Society of Food Science and Nutrition, 40, 1265–1270.CrossRefGoogle Scholar
  13. Kim, H. Y., Hwang, I. G., Kim, T. M., Park, D. S., Kim, J. H., Kim, D. J., Lee, J., & Jeong, H. S. (2011b). Antioxidant and angiotensin converting enzyme I inhibitory activity on different parts of germinated rough rice. Journal of the Korean Society of Food Science and Nutrition, 40, 775–780.CrossRefGoogle Scholar
  14. Kim, H. Y., Hwang, I. G., Kim, T. M., Woo, K. S., Park, D. S., Kim, J. H., Kim, D. J., Lee, S., Lee, Y. R., & Jeong, H. S. (2012a). Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chemistry, 134, 288–293.CrossRefGoogle Scholar
  15. Kim, I. S., Han, S. H., & Han, K. W. (1997). Study on the chemical change of amino acid and vitamin of rapeseed during germination. Journal of the Korean Society of Food Science and Nutrition, 26, 1058–1062.Google Scholar
  16. Kim, M. Y., Lee, S. H., Jang, G. Y., Park, H. J., Li, M. S., Kim, S. J., Lee, Y. R., Lee, J., & Jeong, H. S. (2013). Enzyme inhibition activities of ethanol extracts from germination rough rice (Oryza sativar L.). Journal of the Korean Society of Food Science and Nutrition, 42, 917–923.CrossRefGoogle Scholar
  17. Kim, M. Y., Lee, S. H., Jang, G. Y., Park, H. J., Li, M. S., Kim, S. J., Lee, Y. R., Noh, Y. H., Lee, J., & Jeong, H. S. (2015). Effects of high hydrostatic pressure treatment on the enhancement of functional components of germinated rough rice (Oryza sativa L.). Food Chemistry, 166, 86–92.CrossRefGoogle Scholar
  18. Kim, Y. G., Ko, J. H., Kim, E. H., Nam, H. K., Jo, S. H., Kim, H. W., Kim, J. B., & Han, B. S. (2012b). Quantification of γ-oryzanol components and comparison its biological activity in brown rice. The Korean Journal of Food and Nutrition, 25, 499–504.CrossRefGoogle Scholar
  19. Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N., & Kimura, T. (2007). Effect of soaking and gaseous treatment on GABA content in germinated brown rice. Journal of Food Engineering, 78, 556–560.CrossRefGoogle Scholar
  20. Koseki, S., & Yamamoto, K. (2006). pH and solute concentration of suspension media affect the outcome of high hydrostatic pressure treatment of Listeria monocytogenes. International Journal of Food Microbiology, 111, 175–179.CrossRefGoogle Scholar
  21. Lee, H. S., Lee, H. J., Yu, H. J., Ju, D. W., Kim, Y., Kim, C. T., Kim, C. J., Cho, Y. J., Kim, N., Choi, S. Y., & Suh, H. J. (2011). A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (Panax ginseng CA Meyer). Journal of the Science of Food and Agriculture, 91, 1466–1473.CrossRefGoogle Scholar
  22. Linsberger-Martin, G., Weiglhofer, K., Phuong, T. P. T., & Berghofer, E. (2013). High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWT - Food Science and Technology, 51, 331–336.CrossRefGoogle Scholar
  23. Mozhaev, V. V., Heremans, K., Frank, J., Mansson, P., & Balny, C. (1996). High pressure effects on protein structure and function. Proteins: Structure, Function, and Genetics, 24, 81–91.CrossRefGoogle Scholar
  24. Oliveira, S. C. T., Figueiredo, A. B., Evtuguin, D. V., & Saraiva, J. A. (2012). High pressure treatment as a tool for engineering of enzymatic reactions in cellulosic fibres. Bioresource Technology, 107, 530–534.CrossRefGoogle Scholar
  25. Queirós, R. P., Santos, M. D., Fidalgo, L. G., Mota, M. J., Lopes, R. P., Inácio, R. S., Delgadillo, I., & Saraiva, J. A. (2014). Hyperbaric storage of melon juice at and above room temperature and comparison with storage at atmospheric pressure and refrigeration. Food Chemistry, 147, 209–214.CrossRefGoogle Scholar
  26. Ueno, S., Shigematsu, T., Watanabe, T., Nakajima, K., Murakami, M., Hayashi, M., & Fujii, T. (2010). Generation of free amino acids and γ-aminobutyric acid in water-soaked soybean by high-hydrostatic pressure processing. Journal of Agricultural Food Chemistry, 58, 1208–1213.CrossRefGoogle Scholar
  27. Vries, R. P., & Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews, 65, 497–522.CrossRefGoogle Scholar
  28. Wang, H. F., Tsai, Y. S., Lin, M. L., & Ou, A. S. (2006). Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chemistry, 96, 648–653.CrossRefGoogle Scholar
  29. Yang, F., Basu, T. K., & Ooraikul, B. (2001). Studies on germination conditions and antioxidant contents of wheat grain. International Journal of Food Sciences and Nutrition, 52, 319–330.CrossRefGoogle Scholar
  30. Zhang, G., & Bown, A. W. (1997). The rapid determination of γ-aminobutyric acid. Phytochemistry, 44, 1007–1009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Min Young Kim
    • 1
  • Sang Hoon Lee
    • 1
  • Gwi Yeong Jang
    • 1
  • Meishan Li
    • 1
  • Youn Ri Lee
    • 2
  • Junsoo Lee
    • 1
  • Heon Sang Jeong
    • 1
  1. 1.Department of Food Science and BiotechnologyChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.Department of Food and NutritionDaejeon Health Sciences CollegeDaejeonKorea

Personalised recommendations