Advertisement

Food and Bioprocess Technology

, Volume 8, Issue 10, pp 2066–2075 | Cite as

Extraction of Oat (Avena sativa L.) Antifreeze Proteins and Evaluation of Their Effects on Frozen Dough and Steamed Bread

  • Yanjie Zhang
  • Hui ZhangEmail author
  • Li Wang
  • Haifeng Qian
  • Xiguang Qi
Original Paper

Abstract

In this study, vacuum infiltration-centrifugation of cold-induced oats at −18 °C was adopted in the extraction of oat antifreeze proteins (AFPs), and the effects of the oat AFPs on the physicochemical, rheological, and fermentation properties of frozen dough and the textural characteristics of steamed bread were investigated. Supplementation with oat AFPs lowered the freezable water content of the dough, resulting in some beneficial effects on final steamed bread. The rheological properties of the oat AFP group showed a greater fermentation capacity than did the control group (without oat AFP). A scanning electron microscopic analysis showed that supplementation with oat AFPs could protect the gluten matrix from disruption, thus resulting in superior textural properties in the steamed bread. In conclusion, oat AFPs could be used as a beneficial additive to frozen dough.

Keywords

Oat (Avena sativa L.) Vacuum infiltration-centrifugation Antifreeze proteins Frozen dough Steamed bread Properties 

Abbreviations

AFPs

Antifreeze proteins

THA

Thermal hysteresis activity

SEM

Scanning electron microscopy

DSC

Differential scanning calorimeter

PBS

Phosphate-buffered saline solution

TPA

Texture profile analysis

G

The storage modulus

G

The loss modulus

Hm

The maximum height of the gas emission curve

Hm

The maximum dough height

Vtotal

The total volume

Notes

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 31171637) is gratefully acknowledged.

References

  1. Amornwittawat, N., Wang, S., Duman, J. G., & Wen, X. (2008). Polycarboxylates enhance beetle antifreeze protein activity. Biochimica Et Biophysica Acta-Proteins and Proteomics., 1784(12), 1942–1948.CrossRefGoogle Scholar
  2. Autio, K., & Sinda, E. (1992). Frozen doughs—rheological changes and yeast viability. Cereal Chemistry., 69(4), 409–413.Google Scholar
  3. Baier-Schenk, A., Handschin, S., von Schonau, M., Bittermann, A. G., Bachi, T., & Conde-Petit, B. (2005). In situ observation of the freezing process in wheat dough by confocal laser scanning microscopy (CLSM): formation of ice and changes in the gluten network. Journal of Cereal Science., 42(2), 255–260.CrossRefGoogle Scholar
  4. Bhattacharya, M., Langstaff, T. M., & Berzonsky, W. A. (2003). Effect of frozen storage and freeze-thaw cycles on the rheological and baking properties of frozen doughs. Food Research International., 36(4), 365–372.CrossRefGoogle Scholar
  5. Block, W., Wharton, D. A., & Sinclair, B. J. (1998). Cold tolerance of a New Zealand alpine cockroach, Celatoblatta quinquemaculata (Dictyoptera, Blattidae). Physiological Entomology., 23(1), 1–6.CrossRefGoogle Scholar
  6. Campelo, A. F., & Belo, I. (2004). Fermentative capacity of baker’s yeast exposed to hyperbaric stress. Biotechnology Letters., 26(15), 1237–1240.CrossRefGoogle Scholar
  7. Collar, C., Andreu, P., & Martinez-Anaya, M. A. (1998). Interactive effects of flour, starter and enzyme on bread dough machinability. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a-Food Research and Technology., 207(2), 133–139.CrossRefGoogle Scholar
  8. Curti, E., Carini, E., Bonacini, G., Tribuzio, G., & Vittadini, E. (2013). Effect of the addition of bran fractions on bread properties. Journal of Cereal Science., 57(3), 325–332.CrossRefGoogle Scholar
  9. Ding, X. L., Zhang, H., Liu, W. H., Wang, L., Qian, H. F., & Qi, X. G. (2014). Extraction of carrot (Daucus carota) antifreeze proteins and evaluation of their effects on frozen white salted noodles. Food and Bioprocess Technology., 7(3), 842–852.CrossRefGoogle Scholar
  10. Duman, J. G., & Olsen, T. M. (1993). Thermal hysteresis protein-activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology, 30(3), 322–328.CrossRefGoogle Scholar
  11. ErdogduArnoczky, N., Czuchajowska, Z., & Pomeranz, Y. (1996). Functionality of whey and casein in fermentation and in breadbaking by fixed and optimized procedures. Cereal Chemistry., 73(3), 309–316.Google Scholar
  12. Feeney RE, Yeh Y (1993) Antifreeze proteins—properties, mechanism of action, and possible applications. Food Technology. 47(1), 82-&.Google Scholar
  13. Feeney, R. E., & Yeh, Y. (1998). Antifreeze proteins: current status and possible food uses. Trends in Food Science & Technology., 9(3), 102–106.CrossRefGoogle Scholar
  14. Fenney, F. E., Osuga, D. T., & Yeh, Y. (1996). Antifreeze proteins: from purely scientific interest to possible uses in agriculture, fish culture, foods, and medicine. Agriculture Food Chemistry., 3, 155–174.Google Scholar
  15. Goff, H. D. (1992). Low-temperature stability and the glassy state in frozen foods. Food Research International., 25(4), 317–325.CrossRefGoogle Scholar
  16. Graham, L. A., Liou, Y. C., Walker, V. K., & Davies, P. L. (1997). Hyperactive antifreeze protein from beetles. Nature, 388(6644), 727–728.CrossRefGoogle Scholar
  17. Griffith, M., & Ewart, K. V. (1995). Antifreeze proteins and their potential use in frozen foods. Biotechnology Advances., 13(3), 375–402.CrossRefGoogle Scholar
  18. Hino, A., Takano, H., & Tanaka, Y. (1987). New freeze-tolerant yeast for frozen dough preparations. Cereal Chemistry., 64(4), 269–275.Google Scholar
  19. Inoue, Y., Sapirstein, H. D., Takayanagi, S., & Bushuk, W. (1994). Studies on frozen doughs. III: some factors involved in dough weakening during frozen storage and thaw-freeze cycles. Cereal Chemistry, 71(2), 118–121.Google Scholar
  20. Jiang, Z. Q., Cong, Q. Q., Yan, Q. J., Kumar, N., & Du, X. D. (2010). Characterisation of a thermostable xylanase from Chaetomium sp and its application in Chinese steamed bread. Food Chemistry., 120(2), 457–462.CrossRefGoogle Scholar
  21. Jorov, A., Zhorov, B. S., & Yang, D. S. C. (2004). Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Science., 13(6), 1524–1537.CrossRefGoogle Scholar
  22. Knight, C. A., Cheng, C. C., & Devries, A. L. (1991). Adsorption of alpha-helical antifreeze peptides on specific ice crystal-surface planes. Biophysical Journal., 59(2), 409–418.CrossRefGoogle Scholar
  23. Kontogiorgos, V., Goff, H. D., & Kasapis, S. (2007). Effect of aging and ice structuring proteins on the morphology of frozen hydrated gluten networks. Biomacromolecules, 8(4), 1293–1299.CrossRefGoogle Scholar
  24. Kontogiorgos, V., Goff, H. D., & Kasapis, S. (2008). Effect of aging and ice-structuring proteins on the physical properties of frozen flour-water mixtures. Food Hydrocolloids, 22(6), 1135–1147.CrossRefGoogle Scholar
  25. Kuiper, M. J., Lankin, C., Gauthier, S. Y., Walker, V. K., & Davies, P. L. (2003). Purification of antifreeze proteins by adsorption to ice. Biochemical and Biophysical Research Communications., 300(3), 645–648.CrossRefGoogle Scholar
  26. Laaksonen, T. J., & Roos, Y. H. (2000). Thermal, dynamic-mechanical, and dielectric analysis of phase and state transitions of frozen wheat doughs. Journal of Cereal Science., 32(3), 281–292.CrossRefGoogle Scholar
  27. Lu, W., & Grant, L. A. (1999). Role of flour fractions in breadmaking quality of frozen dough. Cereal Chemistry., 76(5), 663–667.CrossRefGoogle Scholar
  28. Meyer, K., Keil, M., & Naldrett, M. J. (1999). A leucine-rich repeat protein of carrot that exhibits antifreeze activity. Febs Letters., 447(2–3), 171–178.CrossRefGoogle Scholar
  29. Panadero, J., Randez-Gil, F., & Prieto, J. A. (2005). Heterologous expression of type I antifreeze peptide GS−5 in baker’s yeast increases freeze tolerance and provides enhanced gas production in frozen dough. Journal of Agricultural and Food Chemistry., 53(26), 9966–9970.CrossRefGoogle Scholar
  30. Rasanen, J., Blanshard, J. M. V., Mitchell, J. R., Derbyshire, W., & Autio, K. (1998). Properties of frozen wheat doughs at subzero temperatures. Journal of Cereal Science., 28(1), 1–14.CrossRefGoogle Scholar
  31. Ribotta, P. D., Leon, A. E., & Anon, M. C. (2001). Effect of freezing and frozen storage of doughs on bread quality. Journal of Agricultural and Food Chemistry., 49(2), 913–918.CrossRefGoogle Scholar
  32. Ribotta, P. D., Leon, A. E., & Anon, M. C. (2003). Effect of freezing and frozen storage on the gelatinization and retrogradation of amylopectin in dough baked in a differential scanning calorimeter. Food Research International., 36(4), 357–363.CrossRefGoogle Scholar
  33. Sim, S. Y., Aziah, A. A. N., & Cheng, L. H. (2011). Characteristics of wheat dough and Chinese steamed bread added with sodium alginates or konjac glucomannan. Food Hydrocolloids, 25(5), 951–957.CrossRefGoogle Scholar
  34. Smallwood, M., Worrall, D., Byass, L., Elias, L., Ashford, D., Doucet, C. J., Holt, C., Telford, J., Lillford, P., & Bowles, D. J. (1999). Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochemical Journal., 340, 385–391.CrossRefGoogle Scholar
  35. Su, D. M., Ding, C. H., Li, L., Su, D. H., & Zheng, X. Y. (2005). Effect of endoxylanases on dough properties and making performance of Chinese steamed bread. European Food Research and Technology., 220(5–6), 540–545.CrossRefGoogle Scholar
  36. Urrutia, M. E., Duman, J. G., & Knight, C. A. (1992). Plant thermal hysteresis proteins. Biochimica Et Biophysica Acta., 1121(1–2), 199–206.CrossRefGoogle Scholar
  37. Yang, D. S. C., Hon, W. C., Bubanko, S., Xue, Y. Q., Seetharaman, J., Hew, C. L., & Sicheri, F. (1998). Identification of the ice-binding surface on a type III antifreeze protein with a “flatness function” algorithm. Biophysical Journal., 74(5), 2142–2151.CrossRefGoogle Scholar
  38. Yeh, C. M., Kao, B. Y., & Peng, H. J. (2009). Production of a recombinant type 1 antifreeze protein analogue by L. lactis and its applications on frozen meat and frozen dough. Journal of Agricultural and Food Chemistry, 57(14).Google Scholar
  39. Zachariassen, K. E., & Husby, J. A. (1982). Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature, 298(5877), 865–867.CrossRefGoogle Scholar
  40. Zhang, C., Zhang, H., & Wang, L. (2007a). Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Research International., 40(6), 763–769.CrossRefGoogle Scholar
  41. Zhang, C., Zhang, H., Wang, L., Gao, H., Guo, X. N., & Yao, H. Y. (2007b). Improvement of texture properties and flavor of frozen dough by carrot (Daucus carota) antifreeze protein supplementation. Journal of Agricultural and Food Chemistry., 55(23), 9620–9626.CrossRefGoogle Scholar
  42. Zhang, C., Zhang, H., Wang, L., & Yao, H. Y. (2007c). Validation of antifreeze properties of glutathione based on its thermodynamic characteristics and protection of baker’s yeast during cryopreservation. Journal of Agricultural and Food Chemistry., 55(12), 4698–4703.CrossRefGoogle Scholar
  43. Zounis, S., Quail, K. J., Wootton, M., & Dickson, M. R. (2002). Studying frozen dough structure using low-temperature scanning electron microscopy. Journal of Cereal Science., 35(2), 135–147.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yanjie Zhang
    • 1
    • 2
  • Hui Zhang
    • 1
    • 2
    Email author
  • Li Wang
    • 1
    • 2
  • Haifeng Qian
    • 1
    • 2
  • Xiguang Qi
    • 1
    • 2
  1. 1.State Key laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations