Food and Bioprocess Technology

, Volume 8, Issue 7, pp 1503–1511 | Cite as

Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product

  • Fabiano A. N. Fernandes
  • Sueli Rodrigues
  • Juan A. Cárcel
  • José V. García-Pérez
Original Paper

Abstract

This work has examined the influence of ultrasonic-assisted air-drying on the dehydration of apple (Malus domestica L. var Royal Gala) and its influence in the availability of vitamins A, B1, B2, B3, B5, B6, and E of the dried product. This study also has estimated the effective water diffusivity in air-drying process subjected to ultrasonic waves. The water effective diffusivity increased by up to 79 % by ultrasound application, which caused a reduction of about 35 % in the total drying time compared to the air-drying without sonication. The application of ultrasound increased the availability of vitamins B1, B2, B3, and B6 in the dried product. A loss of vitamins B5 and E were observed for all studied drying conditions.

Keywords

Malus domestica L. Apple Drying Ultrasound Vitamins 

Notations

a

Half-length of the cubic sample (m)

ABSSample

Sample (dried apple) absorbance

ABSReference

Control (raw apple) absorbance

D

Effective diffusivity (m2/s)

t

Time (s)

W

Average moisture content of the fruit (gwater/gdry solids)

Wcrit

Critical moisture content (gwater/gdry solids)

Weq

Equilibrium moisture content (gwater/gdry solids)

Notes

Acknowledgments

The authors thank the financial support of the Brazilian funding agency CNPq and the Spanish Ministerio de Economía y Competitividad and FEDER (Ref. DPI2013-37466-C03-03).

References

  1. Ball, G. F. M. (2006). Vitamins in foods: Analysis, bioavailability, and stability (p. 785). Boca Raton: CRC Press.Google Scholar
  2. Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007a). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472–479. doi: 10.1016/j.jfoodeng.2005.10.018.CrossRefGoogle Scholar
  3. Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007b). Influence of high intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25, 185–193.CrossRefGoogle Scholar
  4. Crank, J. (1975). The mathematics of diffusion (2nd ed., p. 414). Glasgow: Oxfort University Press.Google Scholar
  5. Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.CrossRefGoogle Scholar
  6. Farrer, K. T. H. (1955). The thermal destruction of vitamin B1 in foods. Advances in Food Research, 6, 257–311.Google Scholar
  7. Fernandes, F. A. N., & Rodrigues, S. (2008). Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Drying Technology, 26(12), 1509–1516. doi: 10.1080/07373930802412256.CrossRefGoogle Scholar
  8. Fernandes, F. A. N., Linhares, F. E., & Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), 1049–1054. doi: 10.1016/j.ultsonch.2008.03.009.CrossRefGoogle Scholar
  9. Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2010). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology, 4(2), 163–185. doi: 10.1007/s11947-010-0323-7.CrossRefGoogle Scholar
  10. García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Mulet, A. (2006a). Effect of air temperature on convective drying assisted by high power ultrasound. Defect and Diffusion Forum, 258-260, 563–574.Google Scholar
  11. García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Riera-Franco de Sarabia, E. (2006b). Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics, 44(Suppl 1), e539–e543. doi: 10.1016/j.ultras.2006.06.059.CrossRefGoogle Scholar
  12. García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27, 281–287.CrossRefGoogle Scholar
  13. Ghosh, H. P., Sarkar, P. K., & Guha, B. C. (1963). Distribution of the bound form of nicotinic acid in natural materials. The Journal of Nutrition, 79, 451–453.Google Scholar
  14. Greenwood, D. A., Kraybill, H. R., Feaster, J. F., & Jackson, J. M. (1944). Vitamin retention in processed meat. Industrial and Engineering Chemistry, 36, 922–927.CrossRefGoogle Scholar
  15. Gregory, J. F., III. (1985). Chemical changes of vitamins during food processing. In T. Richardson & J. W. Finley (Eds.), Chemical changes in food during processing (pp. 373–408). New York: Van Nostrand Reinhold Company.Google Scholar
  16. Gregory, J. F., III, & Hiner, M. (1983). Thermal stability of vitamin B6 compounds in liquid model food systems. Journal of Food Science, 48, 1323–1327.CrossRefGoogle Scholar
  17. Jedlicka, A., & Klimes, J. (2005). Determination of water- and fat-soluble vitamins in different matrices using high-performance liquid chromatography. Chemical Papers, 59, 202–222.Google Scholar
  18. Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495–506. doi: 10.1016/j.fbp.2013.05.003.CrossRefGoogle Scholar
  19. Merrill, A. H., Lambeth, J. D., Edmondson, D. E., & McCormick, D. B. (1981). Formation and mode of action of flavoproteins. Annual Review of Nutrition, 1, 281–317.CrossRefGoogle Scholar
  20. Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113, 427–433. doi: 10.1016/j.jfoodeng.2012.06.013.CrossRefGoogle Scholar
  21. Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2010). Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4(4), 610–615. doi: 10.1007/s11947-010-0351-3.CrossRefGoogle Scholar
  22. Ortuño, C., Perez-Munuera, I., Puig, A., Riera, E., & García-Pérez, J. V. (2010). Influence of power ultrasound application on mass transport and microestructure of orange peel during hot air drying. Physics Procedia, 3, 153–159.CrossRefGoogle Scholar
  23. Ozuna, C., Gómez Álvarez-Arenas, T., Riera, E., Cárcel, J. A., & García-Pérez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 21, 1235–1243.CrossRefGoogle Scholar
  24. Plesovsky-Vig, N. (1999). In M. E. Shils, J. A. Olson, M. Shike, & A. C. Ross (Eds.), Modern nutrition in health and disease (9th ed., p. 423). Philadelphia: Lippincott Williams and Wilkins.Google Scholar
  25. Puig, A., Perez-Munuera, I., Cárcel, J. A., Hernando, I., & García-Pérez, J. V. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90, 624–632.CrossRefGoogle Scholar
  26. Rizzolo, A., & Polesello, S. (1992). Review Chromatographic determination of vitamins in foods, 624.Google Scholar
  27. Rodrigues, S., & Fernandes, F. A. N. (2007). Use of ultrasound as pretreatment for dehydration of melons. Drying Technology, 25(10), 1791–1796. doi: 10.1080/07373930701595409.CrossRefGoogle Scholar
  28. Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21–29. doi: 10.1016/j.jfoodeng.2014.01.001.CrossRefGoogle Scholar
  29. Sabarez, H. T., Gallego-Juarez, J. A., & Riera, E. (2012). Ultrasonic-assisted convective drying of apple slices. Drying Technology, 30, 989–997.CrossRefGoogle Scholar
  30. Schössler, K., Jäger, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108, 103–110.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fabiano A. N. Fernandes
    • 1
  • Sueli Rodrigues
    • 2
  • Juan A. Cárcel
    • 3
  • José V. García-Pérez
    • 3
  1. 1.Departamento de Engenharia QuímicaUniversidade Federal do CearaFortalezaBrazil
  2. 2.Departamento de Tecnologia dos AlimentosUniversidade Federal do CearaFortalezaBrazil
  3. 3.Grupo de Análisis y Simulación de Procesos Agroalimentarios, Food Technology DepartmentUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations