Advertisement

Food and Bioprocess Technology

, Volume 8, Issue 7, pp 1532–1542 | Cite as

Influence of Ultrasound on Fresh-Cut Mango Quality Through Evaluation of Enzymatic and Oxidative Metabolism

  • Jessika Gonçalves Santos
  • Fabiano Andre Narciso Fernandes
  • Luciana de Siqueira Oliveira
  • Maria Raquel Alcântara de Miranda
Original Paper

Abstract

Ultrasound (US) was applied as a post-processing treatment on fresh-cut mangoes as a means to preserve quality and to further understand its possible physiological effects. Processed fruits were sonicated at 25 kHz for 30 min and stored for 7 days under refrigeration at 4 °C. Fruits were analyzed on treatment day (day 0) and after storage (day 7) for quality through physicochemical and chemical variables, while color and firmness were evaluated in association to physiological variables, at last, variables of oxidative/antioxidant were also analyzed. Initially (day 0), US significantly reduced soluble solids and sugar content in 15 %, although after storage (day 7), there was no difference between treatments. After storage (day 7), US-treated mango was softer, 139.34 N, than control, 241.15 N, and firmness loss was not associated to cell membrane integrity, as determined by lipid peroxidation degree, but to cell wall integrity as hydrolases pectin methylesterase and polygalacturonase were stimulated. The color attribute °Hue was affected by US and declined significantly after the storage (day 7) to 80.79, indicating darkening of tissue. Results indicate that guaiacol peroxidase was the primary cause of darkening while polyphenol oxidase activity, carotenoids, and total flavonoids could not be associated to changes in color. Constant levels of hydrogen peroxide indicate that sonication did not induce an oxidative imbalance in mangoes, and thereby, the non-enzymatic antioxidants, total antioxidant activity, and activity of antioxidant enzymes superoxide dismutase and catalase were not influenced by the US. Therefore, US affected negatively fresh-cut mangoes’ quality through deteriorating changes, and further work should be carried on to explore ultrasound under different conditions as to ensure this technology could be appropriately used at mango postharvest.

Keywords

Ultrasound Antioxidant Fresh-cut Enzymes Quality 

Notes

Acknowledgments

We thank the Instituto Nacional de Ciência e Tecnologia de Frutos Tropicais—INCT/CNPq, Brazil and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES, Brazil, for the financial support and scholarships.

References

  1. Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122, 500–507.CrossRefGoogle Scholar
  2. Ahmad, P. (2014). Oxidative damage to plants: antioxidant networks and signaling (London, UK). Elsevier: Academic Press.Google Scholar
  3. Amako, K., Chen, G. X., & Asada, K. (1994). Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiology, 35(3), 497–504.Google Scholar
  4. AOAC – Association of Official Analytical Chemists. (2005). Official methods of analysis. Washington: USA. Association of Official Analytical Chemists.Google Scholar
  5. Beers-Junior, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133–140.Google Scholar
  6. Bhat, R., Kamaruddin, N. S. B. C., Min-Tze, L., & Karim, A. A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18, 1295–1300.CrossRefGoogle Scholar
  7. Birmpa, A., Sfika, V., & Vantarakis, A. (2013). Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology, 167(1), 96–102.CrossRefGoogle Scholar
  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 722, 248–254.CrossRefGoogle Scholar
  9. Buescher, R. W., & Furmanski, R. J. (1978). Role of pectinesterase and polygalacturonase in the formation of woolliness in peaches. Journal of Food Science, 43(1), 264–266.CrossRefGoogle Scholar
  10. Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H., & Wu, F. (2010). Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control, 21, 529–532.CrossRefGoogle Scholar
  11. Djioua, T., Charles, F., Lopez–Lauri, F., Filgueiras, H., Coudret, A., Freire-Jr, M., Ducamp–Collin, M. N., & Sallanon, H. (2009). Improving the storage of minimally processed mangoes (Mangifera indica L.) by hot water treatments. Postharvest Biology and Technology, 52, 221–226.CrossRefGoogle Scholar
  12. Donadon, J. R., Durigan, J. F., Souza, B. S., & Lima, M. A. (2003). Produtos minimamente processados de mangas ‘Parvin’ conservados em diferentes embalagens. Alimentos e Nutrição, 14(1), 87–92.Google Scholar
  13. El–Shora, H. M. (2002). Properties of phenylalanine ammonia-lyase from marrow cotyledons. Plant Science, 162, 1–7.CrossRefGoogle Scholar
  14. FAOSTAT. (2014). Food and Agriculture Organization of the United Nations. http://faostat3.fao.org/browse/Q/*/E, accessed on(December 2014).Google Scholar
  15. Fernandes, F. A. N., & Rodrigues, S. (2009). Ultrasound processing in minimal processing. Stewart Post-Harvest Reviews, 5, 1–7.CrossRefGoogle Scholar
  16. Fernandes, F. A. N., & Rodrigues, S. (2012). Ultrasound application in fruit processing. In S. Rodrigues & F. A. N. Fernandes (Eds.), Advances in fruit processing technologies (pp. 51–66). New York: CRC Press.CrossRefGoogle Scholar
  17. Fernandes, F. A. N., Gallão, M. I., & Rodrigues, R. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT--Food Science and Technology, 41, 604–610.CrossRefGoogle Scholar
  18. Ferreira, D. F. (2008). SISVAR: um programa para análises e ensino de estatística. Revista Symposium, 6(2), 36–41.Google Scholar
  19. Fonteles, T. V., Costa, M. G., Jesus, A. L. T., Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2012). Power ultrasound processing of cantaloupe melon juice: effects on quality parameters. Food Research International, 48, 41–48.CrossRefGoogle Scholar
  20. Francis, F. J. (1982). Analysis of anthocyanins. In P. Markakis (Ed.), Anthocyanins as food colors (pp. 181–207). New York: Academic Press.CrossRefGoogle Scholar
  21. Garcia–Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, R., & Fernandes, F. A. N. (2010). Ultrasound-assisted osmotic dehydration of strawberries: effect of pretreatment time and ultrasonic frequency. Drying Technology, 28, 294–303.CrossRefGoogle Scholar
  22. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases. I. Occurrence in higher plants. Plant Physiology, 59, 309–314.CrossRefGoogle Scholar
  23. Gogate, P. R., Wilhelm, A. M., & Pandit, A. B. (2003). Some aspects of the design of sonochemical reactors. Ultrasonics Sonochemistry, 10, 325–330.CrossRefGoogle Scholar
  24. Gonzalez–Aguilar, G. A., Celis, J., Sotelo–Mundo, R. R., De La Rosa, L. A., Rodrigo–Garcia, J., & Alvarez–Parrilla, E. (2008). Physiological and biochemical changes of different fresh-cut mango cultivars stored at 5 °C. International Journal of Food Science and Technology, 43, 91–101.CrossRefGoogle Scholar
  25. GTZ - Deutsche Gesellschaft Für Technische Zusammenarbeit. (1992). Manual de exportación: frutas tropicales y hortalizas. Eschborn.Google Scholar
  26. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.CrossRefGoogle Scholar
  27. Jang, J. H., & Moon, K. D. (2011). Inhibition of polyphenol oxidase and peroxidase activities on fresh-cut apple by simultaneous treatment of ultrasound and ascorbic acid. Food Chemistry, 124(2), 444–449.CrossRefGoogle Scholar
  28. Korn, M., Andrade, M. V. A. S., & Borges, S. S. (2003). Procedimentos analíticos assistidos por ultra-som. Revista Analytica, 3, 34–39.Google Scholar
  29. Körner, B., Zimmermann, G., & Berk, Z. (1980). Orange pectinesterase: purification, properties and effect on cloud stability. Journal of Food Science, 45, 1203–1206.Google Scholar
  30. Larrauri, J. A., Rupérez, P., & Saura–Calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45, 1390–1393.CrossRefGoogle Scholar
  31. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591–592.Google Scholar
  32. Löning, J. M., Horst, C., & Hoffmann, U. (2002). Investigations on the energy conversion in sonochemical processes. Ultrasonics Sonochemistry, 9, 169.CrossRefGoogle Scholar
  33. Meng, X., Zhang, M., & Adhikari, B. (2014). The effects of ultrasound treatment and nano-zinc oxide coating on the physiological activities of fresh-cut kiwi fruit. Food and Bioprocess Technology, 7(1), 126–132.CrossRefGoogle Scholar
  34. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Analytical Chemistry, 31(3), 426–428.CrossRefGoogle Scholar
  35. Mori, T., Sakurai, M., & Sakuta, M. (2001). Effects of conditioned medium on activities of PAL, CHS, DAHP syntase (DS-Co and Ds-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Science, 160, 355–360.CrossRefGoogle Scholar
  36. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidases in spinach chloroplasts. Plant Cell Physiology, 22, 867–880.Google Scholar
  37. Negi, P. S., & Roy, S. K. (2000). Effect of low cost storage and packaging on quality and nutritive value of fresh and dehydrated carrots. Journal of Science of Food and Agriculture, 80, 2169–2175.CrossRefGoogle Scholar
  38. O’Donnell, C. P., Tiwari, B. K., Bourke, P., & Cullen, P. J. (2010). Effect of ultrasonic processing on food enzymes of industrial importance. Trends in Food Science and Technology, 21(7), 358–367.CrossRefGoogle Scholar
  39. Obanda, M., & Owuor, P. O. (1997). Flavanol composition and caffeine content of green leaf as quality potential indication of Kenyan black teas. Journal of the Science of Food and Agriculture, 74, 209–215.Google Scholar
  40. Oliveira, F. I. P., Gallão, M. I., Rodrigues, R., & Fernandes, F. A. N. (2010). Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4, 610–615.CrossRefGoogle Scholar
  41. Pressey, R., & Avants, J. K. (1973). Separation and characterization of the exopolygalacturonase and endopolygalacturonase from peaches. Plant Physiology, 52(3), 252–256.CrossRefGoogle Scholar
  42. Rico, D., Martìn-Diana, A. B., Frìas, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Improvement in texture using calcium lactate and heat-shock treatments for stored ready-to-eat carrots. Journal of Engineering, 79, 1196–1206.Google Scholar
  43. Robinson, D. S. (1987). Food biochemistry and nutritional value. Essex: UK. Longman Scientific and Technical.Google Scholar
  44. Robles-Sánchez, R. M., Rojas-Graü, M., Odriozola-Serrano, I., González-Aguilar, G., & Martín-Belloso, O. (2009). Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut Kent mango (Mangifera indica L.). Postharvest Biology and Technology, 51, 384–390.CrossRefGoogle Scholar
  45. Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez–Jimenez, J.; & Saura–Calixto, F.D. (2006). Metodologia científica: Determinação da atividade antioxidante total em frutos pela captura do radical livre ABTS •+ . Comunicado Técnico 128, Fortaleza, Brazil. Embrapa Agroindústria Tropical.Google Scholar
  46. Sergiev, I., Alexieva, V., & Karanov, E. (1997). Effects of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus de l'Académie Bulgare des Sciences, 51, 121–124.Google Scholar
  47. Sojo, M. M., Nuñez–Delicado, E., & García–Carmona, F. (1998). Partial purification of a banana polyphenol oxidase using triton X-114 and PEG 8000 for removal of polyphenols. Journal of Agricultural and Food Chemistry, 46, 4924–4930.CrossRefGoogle Scholar
  48. Sreelakshmi, Y., & Sharma, R. (2008). Differential regulation of phenylalanine ammonia lyase activity and protein level by light in tomato seedlings. Plant Physiology and Biochemistry, 46, 444–451.CrossRefGoogle Scholar
  49. Strohecker, R., & Henning, H. M. (1967). Analisis de vitaminas: métodos comprobados. Madrid: ES. Paz Montalvo.Google Scholar
  50. Yang, Z., Zheng, Y., & Cao, S. (2009). Effect of high oxygen atmosphere storage on quality, antioxidant enzymes, and DPPH-radical scavenging activity of Chinese bayberry fruit. Journal of Agricultural and Food Chemistry, 57, 176–181.CrossRefGoogle Scholar
  51. Yang, Z., Cao, S., Zheng, Y., & Jiang, Y. (2012). Combined salicylic acid and ultrasound treatments for reducing the chilling injury on peach fruit. Journal of Agricultural and Food Chemistry, 60, 1209–1212.CrossRefGoogle Scholar
  52. Yemn, E. W., & Willis, A. J. (1954). The estimation of carbohydrate in plant extracts by anthrone. Biochemical Journal, 57, 508–514.Google Scholar
  53. Zhu, S., Sun, L., Liu, M., & Zhou, J. (2008). Effect of nitric oxide on reactive oxygen species and antioxidant enzymes in kiwifruit during storage. Journal of the Science of Food and Agriculture, 88, 2324–2331.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jessika Gonçalves Santos
    • 1
  • Fabiano Andre Narciso Fernandes
    • 2
  • Luciana de Siqueira Oliveira
    • 1
  • Maria Raquel Alcântara de Miranda
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyFederal University of CearáFortalezaBrazil
  2. 2.Department of Chemical EngineeringFederal University of CearáFortalezaBrazil

Personalised recommendations