Advertisement

Food and Bioprocess Technology

, Volume 8, Issue 6, pp 1169–1186 | Cite as

Review on the Current State of Diacylglycerol Production Using Enzymatic Approach

  • Eng-Tong Phuah
  • Teck-Kim Tang
  • Yee-Ying Lee
  • Thomas Shean-Yaw Choong
  • Chin-Ping Tan
  • Oi-Ming Lai
Original Paper

Abstract

Enzymatic production of diacylglycerol (DAG)-enriched oil has been investigated extensively due to its health benefits with total annual sales of approximately USD 200 million in Japan since its introduction in the late 1990s till 2009. Enzymatic catalysis had been proven to exhibit improved results with respect to yield, purity, reaction time, and stability in comparison with chemical catalysis. The cost of the enzymes, however, is the main hurdle to the widespread use of enzyme for commercial DAG production. This paper attempts to review and summarize various lipase-mediated technological methods for DAG production. Critical aspects such as process considerations on DAG synthesis, mass transfer limitations as well as kinetic mechanism models developed for each enzymatic approach in DAG synthesis are also presented and discussed. In addition, possible reactor configurations were evaluated, if lipase-assisted DAG production is to be technically and economically feasible at an industrial scale.

Keywords

Diacylglycerol Enzyme lipase Obesity Reactor Kinetic study 

Notes

Acknowledgments

The authors thank Sime Darby Research Sdn. Bhd. and the Ministry of Science, Technology and Innovation Malaysia (MOSTI) for their financial supports.

References

  1. Arcos, J. A., & Otero, C. (1996). Enzyme, medium, and reaction engineering to design a low-cost, selective production method for mono- and dioleoylglycerols. Journal of the American Oil Chemists’ Society, 73(6), 673–682.CrossRefGoogle Scholar
  2. Arcos, J. A., Otero, C., & Hill, C. G., Jr. (1998). Rapid enzymatic production of acylglycerols from conjugated linoleic acid and glycerol in a solvent-free system. Biotechnology Letters, 20(6), 617–621.CrossRefGoogle Scholar
  3. Artham, S., Lavie, C., De Schutter, A., Ventura, H., & Milani, R. (2011). Obesity, age, and cardiac risk. Current Cardiovascular Risk Reports, 5(2), 128–137.CrossRefGoogle Scholar
  4. Awadallak, J. A., Voll, F., Ribas, M. C., da Silva, C., Filho, L. C., & da Silva, E. A. (2013). Enzymatic catalyzed palm oil hydrolysis under ultrasound irradiation: diacylglycerol synthesis. Ultrasonics Sonochemistry, 20(4), 1002–1007.CrossRefGoogle Scholar
  5. Babicz, I., Leite, S. G. F., de Souza, R. O. M. A., & Antunes, O. A. C. (2010). Lipase-catalyzed diacylglycerol production under sonochemical irradiation. Ultrasonics Sonochemistry, 17(1), 4–6.Google Scholar
  6. Bellot, J. C., Choisnard, L., Castillo, E., & Marty, A. (2001). Combining solvent engineering and thermodynamic modeling to enhance selectivity during monoglyceride synthesis by lipase-catalyzed esterification. Enzyme and Microbial Technology, 28(4–5), 362–369.CrossRefGoogle Scholar
  7. Berger, M., Laumen, K., & Schneider, M. (1992). Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1,3-sn-diacylglycerols. Journal of the American Oil Chemists’ Society, 69(10), 955–960.Google Scholar
  8. Calderbank, P. H. (1958). Physical rate processes in industrial fermentation. Part I: the interfacial area in gas-liquid contacting with mechanical agitation. Transactions of IChemE, Part A, Chemical Engineering Research and Design, 36, 443–463.Google Scholar
  9. Cheirsilp, B., Kaewthong, W., & H-Kittikun, A. (2007). Kinetic study of glycerolysis of palm olein for monoacylglycerol production by immobilized lipase. Biochemical Engineering Journal, 35(1), 71–80.CrossRefGoogle Scholar
  10. Cheong, L.-Z., Tan, C.-P., Long, K., Affandi Yusoff, M. S., Arifin, N., Lo, S.-K., et al. (2007). Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: optimization using response surface methodology. Food Chemistry, 105(4), 1614–1622.CrossRefGoogle Scholar
  11. Cheong, L.-Z., Zhang, H., Xu, Y., & Xu, X. (2009). Physical characterization of lard partial acylglycerols and their effects on melting and crystallization properties of blends with rapeseed oil. Journal of Agricultural and Food Chemistry, 57(11), 5020–5027.CrossRefGoogle Scholar
  12. Chong, F., Tey, B., Dom, Z., Cheong, K., Satiawihardja, B., Ibrahim, M., et al. (2007). Rice bran lipase catalyzed esterification of palm oil fatty acid distillate and glycerol in organic solvent. Biotechnology and Bioprocess Engineering, 12(3), 250–256.CrossRefGoogle Scholar
  13. Coteron, A., Martinez, M., & Aracil, J. (1998). Reactions of olive oil and glycerol over immobilized lipases. Journal of the American Oil Chemists’ Society, 75(5), 657–660.CrossRefGoogle Scholar
  14. Damstrup, M. L., Abildskov, J., Kiil, S., Jensen, A. D., Sparsø, F. V., & Xu, X. (2006). Evaluation of binary solvent mixtures for efficient monoacylglycerol production by continuous enzymatic glycerolysis. Journal of Agricultural and Food Chemistry, 54(19), 7113–7119.CrossRefGoogle Scholar
  15. Duan, Z.-Q., Du, W., & Liu, D.-H. (2010). Novozym 435-catalyzed 1,3-diacylglycerol preparation via esterification in t-butanol system. Process Biochemistry, 45(12), 1923–1927.CrossRefGoogle Scholar
  16. Feltes, M., Vladimir Oliveira, J., Treichel, H., Block, J., de Oliveira, D., & Ninow, J. (2010). Assessment of process parameters on the production of diglycerides rich in omega-3 fatty acids through the enzymatic glycerolysis of fish oil. European Food Research and Technology, 231(5), 701–710.CrossRefGoogle Scholar
  17. Fiametti, K. G., Sychoski, M. M., Cesaro, A. D., Furigo, A., Jr., Bretanha, L. C., Pereira, C. M. P., et al. (2011). Ultrasound irradiation promoted efficient solvent-free lipase-catalyzed production of mono- and diacylglycerols from olive oil. Ultrasonics Sonochemistry, 18(5), 981–987.CrossRefGoogle Scholar
  18. Finkelstein, E. A., Trogdon, J. G., Cohen, J. W., & Dietz, W. (2009). Annual medical spending attributable to obesity: payer- and service-specific estimates. Health Affairs, 28(5), 822–831.CrossRefGoogle Scholar
  19. Flickinger, B., & Matsuo, N. (2003). Nutritional characteristics of DAG oil. Lipids, 38(2), 129–132.CrossRefGoogle Scholar
  20. Fregolente, P. B. L., Pinto, G. M. F., Wolf-Maciel, M. R., & Filho, R. M. (2010). Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Applied Biochemistry and Biotechnology, 160(7), 1879–1887.CrossRefGoogle Scholar
  21. Garzon-Aburbeh, A., Poupaert, J. H., Claesen, M., Dumont, P., & Atassi, G. (1983). 1,3-Dipalmitoylglycerol ester of chlorambucil as a lymphotropic, orally administrable antineoplastic agent. Journal of Medicinal Chemistry, 26(8), 1200–1203.CrossRefGoogle Scholar
  22. Garzon-Aburbeh, A., Poupaert, J. H., Claesen, M., & Dumont, P. (1986). A lymphotropic prodrug of L-dopa: synthesis, pharmacological properties and pharmacokinetic behavior of 1,3-dihexadecanoyl-2-[(S)-2-amino-3-(3,4-dihydroxyphenyl)propanoyl]propane-1,2,3-triol. Journal of Medicinal Chemistry, 29(5), 687–691.CrossRefGoogle Scholar
  23. Giacometti, J., Giacometti, F., Milin, Č., & Vasić-Rački, Đ. (2001). Kinetic characterisation of enzymatic esterification in a solvent system: adsorptive control of water with molecular sieves. Journal of Molecular Catalysis B: Enzymatic, 11(4–6), 921–928.CrossRefGoogle Scholar
  24. Goldberg, M., Thomas, D., & Legoy, M.-D. (1990). The control of lipase-catalysed transesterification and esterification reaction rates. European Journal of Biochemistry, 190(3), 603–609.CrossRefGoogle Scholar
  25. Gonçalves, J., Razzouk, C., Poupaert, J., & Dumont, P. (1989). High-performance liquid chromatography of chlorambucil prodrugs structurally related to lipids in rat plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 494, 389–396.CrossRefGoogle Scholar
  26. Gonçalves, K., Sutili, F., Leite, S., de Souza, R. O. M. A., & Leal, I. (2012). Palm oil hydrolysis catalyzed by lipases under ultrasound irradiation—the use of experimental design as a tool for variables evaluation. Ultrasonics Sonochemistry, 19(2), 232–236.CrossRefGoogle Scholar
  27. Guedes de Carvalho, J. R. F., Delgado, J. M. P. Q., & Alves, M. A. (2004). Mass transfer between flowing fluid and sphere buried in packed bed of inerts. American Institute of Chemical Engineers, 50, 65–74.CrossRefGoogle Scholar
  28. Gunstone, F. D. (1999). Enzymes as biocatalysts in the modification of natural lipids. Journal of the Science of Food and Agriculture, 79(12), 1535–1549.CrossRefGoogle Scholar
  29. Guo, Z., & Sun, Y. (2007). Solvent-free production of 1,3-diglyceride of CLA: strategy consideration and protocol design. Food Chemistry, 100(3), 1076–1084.CrossRefGoogle Scholar
  30. Ison, A. P., Macrae, A. R., Smith, C. G., & Bosley, J. (1994). Mass transfer effects in solvent-free fat interesterification reactions: influences on catalyst design. Biotechnology and Bioengineering, 43(2), 122–130.CrossRefGoogle Scholar
  31. Jacobs, L., Lee, I., & Poppe, G. (2003). Chemical process for the production of 1,3-diglyceride oils. U.S. Patent no. 2003104109 (in English).Google Scholar
  32. Kahveci, D., Guo, Z., Özçelik, B., & Xu, X. (2010). Optimisation of enzymatic synthesis of diacylglycerols in binary medium systems containing ionic liquids. Food Chemistry, 119(3), 880–885.CrossRefGoogle Scholar
  33. Kamphuis, M. M., Mela, D. J., & Westerterp-Plantenga, M. S. (2003). Diacylglycerols affect substrate oxidation and appetite in humans. The American Journal of Clinical Nutrition, 77(5), 1133–1139.Google Scholar
  34. Kantarci, N., Borak, F., & Ulgen, K. O. (2005). Bubble column reactors. Process Biochemistry, 40, 2263–2283.CrossRefGoogle Scholar
  35. Koizumi, Y., Mukai, K., Murakawa, K., & Yamane, T. (1987). Scale-up of microporous hydrophobic membrane bioreactor with respect to continuous glycerolysis of fat by lipase. Journal of Japan Oil Chemists’ Society, 36(8), 561–564.CrossRefGoogle Scholar
  36. Kosugi, Y., Tanaka, H., & Tomizuka, N. (1990). Continuous hydrolysis of oil by immobilized lipase in a countercurrent reactor. Biotechnology and Bioengineering, 36(6), 617–622.CrossRefGoogle Scholar
  37. Kristensen, J., Xu, X., & Mu, H. (2005). Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases. Journal of the American Oil Chemists’ Society, 82(5), 329–334.CrossRefGoogle Scholar
  38. Krüger, R. L., Valério, A., Balen, M., Ninow, J. L., Vladimir Oliveira, J., de Oliveira, D., et al. (2010). Improvement of mono and diacylglycerol production via enzymatic glycerolysis in tert-butanol system. European Journal of Lipid Science and Technology, 112(8), 921–927.CrossRefGoogle Scholar
  39. Kwon, S. J., Han, J. J., & Rhee, J. S. (1995). Production and in situ separation of mono- or diacylglycerol catalyzed by lipases in n-hexane. Enzyme and Microbial Technology, 17(8), 700–704.CrossRefGoogle Scholar
  40. Lai, O. M., Yusoff, M. S. A., Lo, S. K., Long, K., Tan, C. P., Lim, J. Y., et al. (2006). Process for the production of diacylglycerol. PCT International Application No. PCT/MY2006/000034 (in English).Google Scholar
  41. Lavie, C. J., Milani, R. V., & Ventura, H. O. (2009). Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. Journal of the American College of Cardiology, 53(21), 1925–1932.CrossRefGoogle Scholar
  42. Liao, H.-F., Tsai, W.-C., Chang, S.-W., & Shieh, C.-J. (2003). Application of solvent engineering to optimize lipase-catalyzed 1,3-diacylglycerols by mixture response surface methodology. Biotechnology Letters, 25(21), 1857–1861.CrossRefGoogle Scholar
  43. Liu, N., Wang, Y., Zhao, Q., Zhang, Q., & Zhao, M. (2011). Fast synthesis of 1,3-DAG by Lecitase® ultra-catalyzed esterification in solvent-free system. European Journal of Lipid Science and Technology, 113(8), 973–979.CrossRefGoogle Scholar
  44. Lo, S.-K., Baharin, B. S., Tan, C. P., & Lai, O. M. (2004). Diacylglycerols from palm oil deodoriser distillate. Part 1—synthesis by lipase-catalysed esterification. Food Science and Technology International, 10(3), 149–156.CrossRefGoogle Scholar
  45. Lo, S.-K., Tan, C.-P., Long, K., Yusoff, M. S., & Lai, O.-M. (2008). Diacylglycerol oil—properties, processes and products: a review. Food and Bioprocess Technology, 1(3), 223–233.CrossRefGoogle Scholar
  46. Lortie, R., Trani, M., & Ergan, F. (1993). Kinetic study of the lipase-catalyzed synthesis of triolein. Biotechnology and Bioengineering, 41(11), 1021–1026.CrossRefGoogle Scholar
  47. Louie, S. M., Roberts, L. S., & Nomura, D. K. (2013). Mechanisms linking obesity and cancer. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831(10), 1499–1508.CrossRefGoogle Scholar
  48. Lue, B.-M., Guo, Z., & Xu, X. (2007). Lipid processing in ionic liquids. Lipid Technology, 19(9), 204–207.CrossRefGoogle Scholar
  49. Martinez, C. E., Vinay, J. C., Brieva, R., Hill, C. G., Jr., & Garcia, H. S. (2005). Preparation of mono- and diacylglycerols by enzymatic esterification of glycerol with conjugated linoleic acid in hexane. Applied Biochemistry and Biotechnology, 125(1), 63–75.CrossRefGoogle Scholar
  50. Marty, A., Dossat, V., & Condoret, J.-S. (1997). Continuous operation of lipase-catalyzed reactions in nonaqueous solvents: influence of the production of hydrophilic compounds. Biotechnology and Bioengineering, 56(2), 232–237.CrossRefGoogle Scholar
  51. Matos, L. M. C., Leal, I. C. R., & de Souza, R. O. M. A. (2011). Diacylglycerol synthesis by lipase-catalyzed partial hydrolysis of palm oil under microwave irradiation and continuous flow conditions. Journal of Molecular Catalysis B: Enzymatic, 72(1–2), 36–39.CrossRefGoogle Scholar
  52. McCabe, W. L., Smith, J. C., & Harriott, P. (2005). Unit operations of chemical engineering (7th ed.). New York: McGraw-Hill.Google Scholar
  53. Mozammel Hoo, M., Yamane, T., Shimizu, S., Funada, T., & Ishida, S. (1984). Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor. Journal of the American Oil Chemists’ Society, 61(4), 776–781.CrossRefGoogle Scholar
  54. Murty, V. R., Bhat, J., & Muniswaran, P. K. A. (2002). Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnology and Bioprocess Engineering, 7(2), 57–66.CrossRefGoogle Scholar
  55. Nakajima, Y. (2004). Water-retaining ability of diacylglycerol. Journal of the American Oil Chemists’ Society, 81(10), 907–912.CrossRefGoogle Scholar
  56. Noor, I. M., Hasan, M., & Ramachandran, K. B. (2003). Effect of operating variables on the hydrolysis rate of palm oil by lipase. Process Biochemistry, 39(1), 13–20.CrossRefGoogle Scholar
  57. Padmini, P., Iyengar, K. K. S., & Baradarajan, A. (1995). Hydrolysis of ricebran oil in a fluidised-bed recycle reactor using immobilised lipase on nylon-6. Journal of Chemical Technology & Biotechnology, 64(1), 31–34.CrossRefGoogle Scholar
  58. Pawongrat, R., Xu, X., & H-Kittikun, A. (2007). Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chemistry, 104(1), 251–258.CrossRefGoogle Scholar
  59. Phuah, E.-T., Lai, O.-M., Choong, T. S.-Y., Tan, C.-P., & Lo, S.-K. (2012). Kinetic study on partial hydrolysis of palm oil catalyzed by Rhizomucor miehei lipase. Journal of Molecular Catalysis B: Enzymatic, 78, 91–97.CrossRefGoogle Scholar
  60. Plou, F. J., Barandiarán, M., Calvo, M. V., Ballesteros, A., & Pastor, E. (1996). High-yield production of mono- and di-oleylglycerol by lipase-catalyzed hydrolysis of triolein. Enzyme and Microbial Technology, 18(1), 66–71.CrossRefGoogle Scholar
  61. Rendón, X., López-Munguía, A., & Castillo, E. (2001). Solvent engineering applied to lipase-catalyzed glycerolysis of triolein. Journal of the American Oil Chemists’ Society, 78(10), 1061–1066.CrossRefGoogle Scholar
  62. Rosu, R., Yasui, M., Iwasaki, Y., & Yamane, T. (1999). Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent-free system. Journal of the American Oil Chemists’ Society, 76(7), 839–843.CrossRefGoogle Scholar
  63. Rudkowska, I., Roynette, C. E., Demonty, I., Vanstone, C. A., Jew, S., & Jones, P. J. H. (2005). Diacylglycerol: efficacy and mechanism of action of an anti-obesity agent. Obesity, 13(11), 1864–1876.CrossRefGoogle Scholar
  64. Shaikh, M., & Huang, X. (2012). Organic ionic liquids: ultimate green solvents in organic synthesis. In A. Mohammad & D. Inamuddin (Eds.), Green solvents II (pp. 473–491). Netherlands: Springer.CrossRefGoogle Scholar
  65. Sonntag, N. V. (1982). Glycerolysis of fats and methyl esters—status, review and critique. Journal of the American Oil Chemists Society, 59(10), 795A–802A.CrossRefGoogle Scholar
  66. Sugiura, M., Yamaguchi, H., & Yamada, N. (2002). Preparation process of diglyceride. US Patent no. US6361980 (in English).Google Scholar
  67. Tada, N. (2004). Physiological actions of diacylglycerol outcome. Current Opinion in Clinical Nutrition & Metabolic Care, 7(2), 145–149.CrossRefGoogle Scholar
  68. Tada, N., Watanabe, H., Matsuo, N., Tokimitsu, I., & Okazaki, M. (2001). Dynamics of postprandial remnant-like lipoprotein particles in serum after loading of diacylglycerols. Clinica Chimica Acta, 311(2), 109–117.CrossRefGoogle Scholar
  69. Taguchi, H., Omachi, T., Nagao, T., Matsuo, N., Tokimitsu, I., & Itakura, H. (2002). Dietary diacylglycerol suppresses high fat diet-induced hepatic fat accumulation and microsomal triacylglycerol transfer protein activity in rats. The Journal of Nutritional Biochemistry, 13(11), 678–683.CrossRefGoogle Scholar
  70. Tai, H. P., & Brunner, G. (2011). Mono- and di-acylglycerol synthesis in CO2-expanded acetone. The Journal of Supercritical Fluids, 59, 87–91.CrossRefGoogle Scholar
  71. Takase, H. (2007). Metabolism of diacylglycerol in humans. Asia Pacific Journal of Clinical Nutrition, 16, 398–403.Google Scholar
  72. Tan, T., & Yin, C. (2005). The mechanism and kinetic model for glycerolysis by 1,3 position specific lipase from Rhizopus arrhizus. Biochemical Engineering Journal, 25(1), 39–45.CrossRefGoogle Scholar
  73. Torres, C., Lin, B., & Hill, C., Jr. (2002). Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues. Biotechnology Letters, 24(9), 667–673.CrossRefGoogle Scholar
  74. Tripathi, V., Trivedi, R., & Singh, R. P. (2006). Lipase-catalyzed synthesis of diacylglycerol and monoacylglycerol from unsaturated fatty acid in organic solvent system. Journal of Oleo Science, 55(2), 65–69.CrossRefGoogle Scholar
  75. Valério, A., Krüger, R. L., Ninow, J., Corazza, F. C., de Oliveira, D., Oliveira, J. V., et al. (2009). Kinetics of solvent-free lipase-catalyzed glycerolysis of olive oil in surfactant system. Journal of Agricultural and Food Chemistry, 57(18), 8350–8356.CrossRefGoogle Scholar
  76. Valério, A., Rovani, S., Treichel, H., de Oliveira, D., & Oliveira, J. V. (2010). Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioprocess and Biosystems Engineering, 33(7), 805–812.CrossRefGoogle Scholar
  77. van der Padt, A. (1993). Enzymatic acylglycerol synthesis in membrane reactor systems. Wageningen Agricultural University.Google Scholar
  78. Voll, F., Krüger, R. L., de Castilhos, F., Filho, L. C., Cabral, V., Ninow, J., et al. (2011). Kinetic modeling of lipase-catalyzed glycerolysis of olive oil. Biochemical Engineering Journal, 56(3), 107–115.CrossRefGoogle Scholar
  79. Voll, F. A. P., Zanette, A. F., Cabral, V. F., Dariva, C., De Souza, R. O. M. A., Filho, L. C., et al. (2012). Kinetic modeling of solvent-free lipase-catalyzed partial hydrolysis of palm oil. Applied Biochemistry and Biotechnology, 168(5), 1121–1142.CrossRefGoogle Scholar
  80. Waldinger, C., & Schneider, M. (1996). Enzymatic esterification of glycerol III. Lipase-catalyzed synthesis of regioisomerically pure 1,3-diacylglycerols and 1 (3)-monoacylglycerols derived from unsaturated fatty acids. Journal of the American Oil Chemists’ Society, 73(11), 1513–1519.CrossRefGoogle Scholar
  81. Wang, Y., Zhao, M., Ou, S., Song, K., & Han, X. (2009a). Preparation of diacylglycerol-enriched palm olein by phospholipase A1-catalyzed partial hydrolysis. European Journal of Lipid Science and Technology, 111(7), 652–662.CrossRefGoogle Scholar
  82. Wang, Y., Zhao, M., Ou, S., Xie, L., & Tang, S. (2009b). Preparation of a diacylglycerol-enriched soybean oil by phospholipase A1 catalyzed hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 56(2–3), 165–172.CrossRefGoogle Scholar
  83. Wang, Y., Zhao, M., Song, K., Wang, L., Tang, S., & Riley, W. W. (2010). Partial hydrolysis of soybean oil by phospholipase A1 (Lecitase Ultra). Food Chemistry, 121(4), 1066–1072.CrossRefGoogle Scholar
  84. Wang, W., Li, T., Ning, Z., Wang, Y., Yang, B., & Yang, X. (2011). Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis. Enzyme and Microbial Technology, 49(2), 192–196.CrossRefGoogle Scholar
  85. Watanabe, H., Onizawa, K., Taguchi, H., Kobori, M., Chiba, H., & Naito, S. (1997). Nutritional characterization of diacylglycerols in rats. Journal of the Japanese Oil Chemists’ Society, 46, 1066–1072.Google Scholar
  86. Watanabe, T., Shimizu, M., Sugiura, M., Sato, M., Kohori, J., Yamada, N., et al. (2003). Optimization of reaction conditions for the production of DAG using immobilized 1,3-regiospecific lipase lipozyme RM IM. Journal of the American Oil Chemists’ Society, 80(12), 1201–1207.CrossRefGoogle Scholar
  87. Weber, N., & Mukherjee, K. D. (2004). Solvent-free lipase-catalyzed preparation of diacylglycerols. Journal of Agricultural and Food Chemistry, 52(17), 5347–5353.CrossRefGoogle Scholar
  88. WHO (1990). Diet, nutrition, and the prevention of chronic diseases. Report of a WHO Study Group. WHO Technical Report Series 797, WHO, Geneva.Google Scholar
  89. WHO (2014). Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 20 Sep 2014.
  90. WHO/FAO (1993). Recommendations on fats and oils in human nutrition. Report of a joint expert consultation. FAQ Food and Nutrition Paper 57, FAO/WHO, Rome.Google Scholar
  91. Wyatt, V. T., Bush, D., Lu, J., Hallett, J. P., Liotta, C. L., & Eckert, C. A. (2005). Determination of solvatochromic solvent parameters for the characterization of gas-expanded liquids. The Journal of Supercritical Fluids, 36(1), 16–22.CrossRefGoogle Scholar
  92. Xu, X. (2003). Engineering of enzymatic reactions and reactors for lipid modification and synthesis. European Journal of Lipid Science and Technology, 105(6), 289–304.CrossRefGoogle Scholar
  93. Xu, X., Balchen, S., Høy, C. E., & Adler-Nissen, J. (1998). Production of specific-structured lipids by enzymatic interesterification in a pilot continuous enzyme bed reactor. Journal of the American Oil Chemists’ Society, 75(11), 1573–1579.CrossRefGoogle Scholar
  94. Yamane, T., Kang, S., Kawahara, K., & Koizumi, Y. (1994). High-yield diacylglycerol formation by solid-phase enzymatic glycerolysis of hydrogenated beef tallow. Journal of the American Oil Chemists’ Society, 71(3), 339–342.CrossRefGoogle Scholar
  95. Yanai, H., Tomono, Y., Ito, K., Furutani, N., Yoshida, H., & Tada, N. (2007). Diacylglycerol oil for the metabolic syndrome. Nutrition Journal, 6(43), 1–6.Google Scholar
  96. Yang, T., Rebsdorf, M., Engelrud, U., & Xu, X. (2005). Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. Journal of Food Lipids, 12(4), 299–312.CrossRefGoogle Scholar
  97. Yeoh, C. M., Choong, T. S. Y., Abdullah, L. C., Yunus, R., & Siew, W. L. (2009). Influence of silica gel in production of diacylglycerol via enzymatic glycerolysis of palm olein. European Journal of Lipid Science and Technology, 111(6), 599–606.CrossRefGoogle Scholar
  98. Yesiloglu, Y., & Kilic, I. (2004). Lipase-catalyzed esterification of glycerol and oleic acid. Journal of the American Oil Chemists’ Society, 81(3), 281–284.CrossRefGoogle Scholar
  99. Zaks, A., & Klibanov, A. M. (1988a). The effect of water on enzyme action in organic media. Journal of Biological Chemistry, 263(17), 8017–8021.Google Scholar
  100. Zaks, A., & Klibanov, A. M. (1988b). Enzymatic catalysis in nonaqueous solvents. Journal of Biological Chemistry, 263(7), 3194–3201.Google Scholar
  101. Zhong, N., Li, L., Xu, X., Cheong, L., Li, B., Hu, S., et al. (2009). An efficient binary solvent mixture for monoacylglycerol synthesis by enzymatic glycerolysis. Journal of the American Oil Chemists’ Society, 86(8), 783–789.CrossRefGoogle Scholar
  102. Zhong, N., Gui, Z., Xu, L., Huang, J., Hu, K., Gao, Y., et al. (2013). Solvent-free enzymatic synthesis of 1, 3-diacylglycerols by direct esterification of glycerol with saturated fatty acids. Lipids in Health and Disease, 12(65), 1–7.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eng-Tong Phuah
    • 1
  • Teck-Kim Tang
    • 1
  • Yee-Ying Lee
    • 1
  • Thomas Shean-Yaw Choong
    • 2
    • 3
  • Chin-Ping Tan
    • 4
  • Oi-Ming Lai
    • 1
    • 5
  1. 1.Institute of BioscienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Chemical Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.INTROP, Universiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Food Technology, Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations