Food and Bioprocess Technology

, Volume 8, Issue 6, pp 1355–1365 | Cite as

Effect of Pulsed Electric Field Treatment on the Eating and Keeping Qualities of Cold-Boned Beef Loins: Impact of Initial pH and Fibre Orientation

  • Via Suwandy
  • Alan Carne
  • Remy van de Ven
  • Alaa El-Din A. Bekhit
  • David L. Hopkins
Original Paper


In this study, the effects of fibre direction and initial pH on the effectiveness of pulsed electric field (PEF) treatment (10 kV, 90 Hz, 20 μs) to improve the quality of beef Longissimus muscle (LL) was evaluated. The traits studied included tenderness (shear force), water loss, meat colour, lipid oxidation and post-mortem proteolysis. Beef LL muscles of three different pH ranges (5.5–5.8, 5.8–6.1 and >6.1) were obtained from 16 bull carcasses. The LL muscles were removed from the carcasses 24 h post-mortem and treated with pulsed electric field within 6 h. No significant effect was found on total water loss, shear force, meat colour and lipid stability between the treated and the corresponding non-treated control samples due to fibre direction or initial pH. Increased proteolysis was found in treated samples as evident by increases in troponin-T and desmin degradation. A larger increase in proteolysis was observed in low-pH (5.5–5.8) samples compared to the high-pH (>6.1) samples which was reflected in shear force measurements.


pH Fibre direction Tenderness Colour stability Lipid oxidation Proteolysis Shear force 



The financial support by Meat and Livestock Australia and Australian Meat Processor Corporation Ltd. is greatly acknowledged. The assistance of the management and staff of Alliance Group and the team at Pukeuri Plant is also acknowledged.


  1. Aalhus, J. L., Jones, S. D. M., Tong, A. K. W., Jeremiah, L. E., Robertson, W. M., & Gibson, L. L. (1992). The combined effects of time on feed, electrical stimulation and aging on beef quality. Canadian Journal of Animal Science, 72(3), 525–535.CrossRefGoogle Scholar
  2. Abril, M., Campo, M. M., Ӧnenḉ, A., Sanudo, C., Alberti, P., & Negueruela, A. I. (2001). Beef colour evolution as a function of ultimate pH. Meat Science, 58, 69–78.CrossRefGoogle Scholar
  3. AMSA. (2012). Meat color measurement guidelines. Retrieved 26 July 2013, from American Meat Science Association
  4. Babiker, S. A., & Lawrie, R. A. (1983). Post-mortem electrical stimulation and high temperature ageing of hot-deboned beef. Meat Science, 8(1), 1–20.CrossRefGoogle Scholar
  5. Bee, G., Anderson, A. L., Lonergan, S. M., & Huff-Lonergan, E. (2007). Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork. Meat Science, 76, 359–365.CrossRefGoogle Scholar
  6. Bekhit, A. E. D. (2003). The role of metmyoglobin reducing activity in the maintenance of fresh meat colour. PhD Thesis, Lincoln University, New Zealand.Google Scholar
  7. Bekhit, A. E. D., Farouk, M. M., Cassidy, L., & Gilbert, K. V. (2007). Effects of rigor temperature and electrical stimulation on venison quality. Meat Science, 75, 564–574.CrossRefGoogle Scholar
  8. Bekhit, A. E. D., Hopkins, D. L., Fahri, F. T., & Ponnampalam, E. N. (2013). Oxidative processes in muscle systems and fresh meat: sources, markers and remedies. Comprehensive Reviews in Food Science and Food Safety, 12, 565–597.CrossRefGoogle Scholar
  9. Bekhit, A. E. D., van de Ven, R., Hopkins, D. L., Suwandy, V., & Fahri, F. (2014). Effect of pulsed electric field treatment on cold boned muscles of different potential tenderness. Food and Bioprocess Technology, 7, 3136–3146.CrossRefGoogle Scholar
  10. Butler, D. (2009). asreml: asreml fits the linear mixed model. R package version 3.0-1.
  11. Castigliego, L., Armani, A., & Guidi, A. (2012). Meat color. In Y. H. Hui (Ed.), Handbook of meat and meat processing (2nd ed., pp. 81–106). New York: CRC Press.CrossRefGoogle Scholar
  12. Cheng, Q., & Sun, D. W. (2008). Factors affecting the water holding capacity of red meat products: a review of recent research. Critical Reviews in Food Science and Nutrition, 48, 137–159.CrossRefGoogle Scholar
  13. Chrystall, B. B. & Devine, C. E. (1991). Quality assurance for tenderness. Publication No. 872. Meat Industries Research Institute of New Zealand.Google Scholar
  14. Claeys, E., Smet, S. D., Balcaen, A., Raes, K., & Demeyer, D. (2004). Quantification of fresh meat peptides by SDS-PAGE in relation to ageing time and taste intensity. Meat Science, 67(2), 281–288.CrossRefGoogle Scholar
  15. R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  16. Cornforth, D. (1994). Color—its basis and importance. In A. M. Pearson & T. R. Dutson (Eds.), Quality attributes and their measurement in meat, poultry and fish products (pp. 34–78). USA: Springer.CrossRefGoogle Scholar
  17. Dransfield, E. (1994). Optimisation of tenderisation, ageing and tenderness. Meat Science, 36, 105–121.CrossRefGoogle Scholar
  18. Farouk, M. M., Mustafa, N. M., Wu, G., & Krsinic, G. (2012). The “sponge effect” hypothesis: an alternative explanation of the improvement in the water holding capacity of meat with ageing. Meat Science, 90, 670–677.CrossRefGoogle Scholar
  19. Geesink, G. H., Bekhit, A. D., & Bickerstaffe, R. (2000). Rigor temperature and meat quality characteristics of lamb longissimus muscle. Journal of Animal Science, 78, 2842–2848.Google Scholar
  20. Ha, M. H. (2012). Characterisation of cysteine proteases and their catalytic impact on meat myofibril and meat connective tissue proteins. Master of Science thesis, University of Otago, New Zealand.Google Scholar
  21. Ha, M. H., Bekhit, A. E. D., Carne, A., & Hopkins, D. L. (2013). Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins. Food Chemistry, 136, 989–998.CrossRefGoogle Scholar
  22. Han, J., Morton, J. D., Bekhit, A. E. D., & Sedcole, J. R. (2009). Pre-rigor infusion with kiwifruit juice improves lamb tenderness. Meat Science, 82(3), 324–330.CrossRefGoogle Scholar
  23. Ho, C. Y., Stromer, M. H., & Robson, R. M. (1994). Identification of the 30 kDa polypeptide in post mortem skeletal muscle as a degradation product of troponin-T. Biochimie, 76(5), 369–375.CrossRefGoogle Scholar
  24. Ho, C. Y., Stromer, M. H., & Robson, R. M. (1996). Effect of electrical stimulation on postmortem titin, nebulin, desmin and troponin-T degradation and ultrastructural changes in bovine longissimus muscle. Journal of Animal Science, 74(7), 1563–1575.Google Scholar
  25. Huff-Lonergan, E., & Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Science, 71(1), 194–204.CrossRefGoogle Scholar
  26. Hughes, J., Oiseth, S., Purslow, P., & Warner, R. D. (2014). A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Science, 98, 520–532.CrossRefGoogle Scholar
  27. Hwang, I. H., Devine, C. E., & Hopkins, D. L. (2003). The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness. Meat Science, 65(2), 677–691.CrossRefGoogle Scholar
  28. Koohmaraie, M., & Shackelford, S. D. (1991). Effect of calcium chloride infusion on the tenderness of lamb fed a b-adrenergic agonist. Journal of Animal Science, 69, 2463–2471.Google Scholar
  29. Ledward, D. A. (1985). Post-slaughter influences on the formation of metmyoglobin in beef muscles. Meat Science, 15, 149–171.CrossRefGoogle Scholar
  30. Lomiwes, D., Farouk, M. M., Wu, G., & Young, O. A. (2014). The development of meat tenderness is likely to be compartmentalised by ultimate pH. Meat Science, 96, 646–651.CrossRefGoogle Scholar
  31. Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71(1), 100–121.CrossRefGoogle Scholar
  32. Marino, R., Albenzio, M., Malva, A. D., Santillo, A., Loizzo, P., & Sevi, A. (2013). Proteolytic pattern of myofibrillar protein and meat tenderness as affected by breed and aging time. Meat Science, 95, 281–287.CrossRefGoogle Scholar
  33. Marsh, B. B., Ringkob, T. P., Russell, R. L., Swartz, D. R., & Pagel, L. A. (1987). Effects of earl-postmortem glycolytic rate on beef tenderness. Meat Science, 21(4), 241–248.CrossRefGoogle Scholar
  34. McBride, M. A., & Parrish, J. F. C. (1977). The 30,000-dalton component of tender bovine longissimus muscle. Journal of Food Science, 42, 1627–1629.CrossRefGoogle Scholar
  35. Micklander, E., Bertram, H. C., Marnø, H., Bak, L. S., Andersen, H. J., Engelsen, S. B., & Nørgaard, L. (2005). Early post-mortem discrimination of water-holding capacity in pig longissimus muscle using new ultrasound method. LWT - Food Science and Technology, 38, 437–445.CrossRefGoogle Scholar
  36. O’Dowd, L. P., Arimi, J. M., Noci, F., Cronin, D. A., & Lyng, J. G. (2013). An assessment of the effect of pulsed electrical fields on tenderness and selected quality attributes of post rigour beef muscle. Meat Science, 93(2), 303–309.CrossRefGoogle Scholar
  37. O’Halloran, G. R., Troy, D. J., & Buckley, D. J. (1997). The relationship between early post-mortem pH and the tenderisation of beef muscles. Meat Science, 45(2), 239–251.CrossRefGoogle Scholar
  38. Olson, D. G., & Parrish, F. C., Jr. (1977). Relationship of myofibril fragmentation index to measures of beefsteak tenderness. Journal of Food Science, 42, 506–509.CrossRefGoogle Scholar
  39. Schafer, A., Rosenvold, K., Purslow, P. P., Andersen, H. J., & Henckel, P. (2002). Physiological and structural events post mortem of importance for drip loss in pork. Meat Science, 61, 355–366.CrossRefGoogle Scholar
  40. Silva, J. A., Patarata, L., & Martins, C. (1999). Influence of ultimate pH on bovine meat tenderness during ageing. Meat Science, 52, 453–459.CrossRefGoogle Scholar
  41. Strydom, P. E., & Frylinck, L. (2014). Minimal electrical stimulation is effective in low stressed and well fed cattle. Meat Science, 96, 790–798.CrossRefGoogle Scholar
  42. Sun, X., Chen, K. J., Berg, E. P., Newman, D. J., Schwartz, C. A., & Keller, W. L. (2014). Prediction of troponin-T degradation using color image texture features in 10 d aged beef longissimus steaks. Meat Science, 96, 837–842.CrossRefGoogle Scholar
  43. Suwandy, V., Carne, A., van de Ven, R., Bekhit, A. E. D., & Hopkins, D. L. (2015). Effect of pulsed electric field on the proteolysis of cold boned beef M. Longissimus lumborum and M. Semimembranosus. Meat Science, 100, 222–226.CrossRefGoogle Scholar
  44. Töpfl, S. (2006). Pulsed electric fields (PEF) for permeabilization of cell membranes in food-and bioprocessing: applications, process and equipment design and cost analysis. Ph.D thesis, Universität Berlin, Germany.Google Scholar
  45. Watanabe, A., & Devine, C. (1996). Effect of meat ultimate pH on rate of titin and nebulin degradation. Meat Science, 42, 407–413.CrossRefGoogle Scholar
  46. Watanabe, A., Daly, C. C., & Devine, C. E. (1996). The effects of the ultimate pH of meat tenderness changed during ageing. Meat Science, 42(1), 67–78.CrossRefGoogle Scholar
  47. Wheeler, T. L., & Koohmaraie, M. (1999). The extent of proteolysis is independent of sacromere length in lamb longissimus and psoas major. Journal of Animal Science, 77, 2444–2451.Google Scholar
  48. Wiklund, E., Stevenson-Barry, J. M., Duncan, S. J., & Littlejohn, R. P. (2001). Electrical stimulation of red deer (Cervus elaphus) carcasses—effects on rate of pH-decline, meat tenderness, colour stability and water-holding capacity. Meat Science, 59(2), 211–220.CrossRefGoogle Scholar
  49. Yates, L. D., Dutson, T. R., Caldwell, J., & Carpenter, Z. L. (1983). Effect of temperature and pH on the post-mortem degradation of myofibrillar proteins. Meat Science, 9, 157–179.CrossRefGoogle Scholar
  50. Zhang, Q., Barbosa-Canovas, G. V., & Swanson, B. G. (1995). Engineering aspects of pulsed electric field pasteurisation. Journal of Food Engineering, 25, 261–281.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Via Suwandy
    • 1
  • Alan Carne
    • 2
  • Remy van de Ven
    • 3
  • Alaa El-Din A. Bekhit
    • 1
  • David L. Hopkins
    • 4
  1. 1.Department of Food ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  3. 3.NSW Department of Primary IndustriesOrange Agricultural InstituteOrangeAustralia
  4. 4.NSW Department of Primary IndustriesCentre for Red Meat and Sheep DevelopmentCowraAustralia

Personalised recommendations