Food and Bioprocess Technology

, Volume 8, Issue 6, pp 1218–1228 | Cite as

Effect of Repeated Pulsed Electric Field Treatment on the Quality of Cold-Boned Beef Loins and Topsides

  • Via Suwandy
  • Alan Carne
  • Remy van de Ven
  • Alaa El-Din A. Bekhit
  • David L. Hopkins
Original Paper

Abstract

Tenderness, water loss, colour and lipid stability are important quality attributes of fresh meat. This study investigated the effect of repeated (1×, 2× or 3×) pulsed electric field treatment (10 kV, 90 Hz, 20 μs) on the tenderness, purge loss, cooking loss, colour, lipid oxidation, protein profile and post-treatment proteolysis of cold-boned beef longissimus lumborum and Musculus semimembranosus muscles. The shear force of beef longissimus lumborum was found to decrease by 2.5 N with every extra application of pulsed electric field treatment, while the shear force of M. semimembranosus muscle was not significantly affected by pulsed electric field treatment. There was an increase in proteolysis of beef longissimus lumborum treated with 1× pulsed electric field as evident by increased troponin T and desmin degradation; however, less degradation was found with increasing number of pulsed electric field treatments suggesting another mechanism such as physical disruption is responsible for the tenderisation of beef by pulsed electric field.

Keywords

Tenderness Colour stability Lipid oxidation Proteolysis Shear force 

Notes

Acknowledgments

The financial support by Meat and Livestock Australia and Australian Meat Processor Corporation Ltd is greatly acknowledged. The assistance of the management and staff of Alliance Group and the team at Pukeuri Plant is acknowledged. The cardiac troponin T antibody developed by Jim Jung-Ching Lin was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242.

References

  1. Aalhus, J. L., Jones, S. D. M., Tong, A. K. W., Jeremiah, L. E., Robertson, W. M., & Gibson, L. L. (1992). The combined effects of time on feed, electrical stimulation and aging on beef quality. Canadian Journal of Animal Science, 72(3), 525–535.CrossRefGoogle Scholar
  2. AMSA. (2012). Meat color measurement guidelines. Retrieved 26 July 2013, from American Meat Science Association http://www.meatscience.org/ http://www.meatscience.org/uploadedFiles/Publications_Resources/AMSA%20Meat%20Color%20Guidelines%20Second%20Edition.pdf
  3. Babiker, S. A., & Lawrie, R. A. (1983). Post-mortem electrical stimulation and high temperature ageing of hot-deboned beef. Meat Science, 8(1), 1–20.CrossRefGoogle Scholar
  4. Bekhit, A. E. D., & Faustman, C. (2005). Metmyoglobin reducing activity: a review. Meat Science, 71, 407–439.CrossRefGoogle Scholar
  5. Bekhit, A. E. D., Farouk, M. M., Cassidy, L., & Gilbert, K. V. (2007). Effects of rigor temperature and electrical stimulation on venison quality. Meat Science, 75, 564–574.CrossRefGoogle Scholar
  6. Bekhit, A. E. D., Geesink, G. H., Ilian, M. A., Morton, J. D., & Bickerstaffe, R. (2003). The effect of natural antioxidants on oxidative processes and metmyoglobin reducing activity in beef patties. Food Chemistry, 81, 175–187.CrossRefGoogle Scholar
  7. Bekhit, A. E. D., van de Ven, R., Hopkins, D. L., Suwandy, V., & Fahri, F. (2014). Effect of pulsed electric field treatment on cold boned muscles of different potential tenderness. Food and Bioprocess Technology, 7, 3136–3146.CrossRefGoogle Scholar
  8. Butler, D. (2009). Asreml fits the linear mixed model. R package version 3.0-1. www.vsni.co.uk/.
  9. Castigliego, L., Armani, A., & Guidi, A. (2012). Meat Color. In Y. H. Hui (Ed.), Handbook of meat and meat processing (2nd ed., pp. 81–106). New York: CRC Press.CrossRefGoogle Scholar
  10. Cheng, Q., & Sun, D. W. (2008). Factors affecting the water holding capacity of red meat products: a review of recent research. Critical Reviews in Food Science and Nutrition, 48, 137–159.CrossRefGoogle Scholar
  11. Chrystall, B. B. & Devine, C. E. (1991). Quality assurance for tenderness. Publication No. 872. Meat Industries Research Institute of New Zealand.Google Scholar
  12. Claeys, E., Smet, S. D., Balcaen, A., Raes, K., & Demeyer, D. (2004). Quantification of fresh meat peptides by SDS-PAGE in relation to ageing time and taste intensity. Meat Science, 67(2), 281–288.CrossRefGoogle Scholar
  13. Cornforth, D. (1994). Color—its basis and importance. In A. M. Pearson & T. R. Dutson (Eds.), Quality attributes and their measurement in meat, poultry and fish products (pp. 34–78). USA: Springer.CrossRefGoogle Scholar
  14. Faustman, C., Sun, Q., Mancini, R., & Suman, S. P. (2010). Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Science, 86(1), 86–94.CrossRefGoogle Scholar
  15. Geesink, G. H., Bekhit, A. D., & Bickerstaffe, R. (2000). Rigor temperature and meat quality characteristics of lamb longissimus muscle. Journal of Animal Science, 78, 2842–2848.Google Scholar
  16. Gray, J. I., Gomaa, E. A., & Buckley, D. J. (1996). Oxidative quality and shelf life of meats. Meat Science, 43(1), 111–123.CrossRefGoogle Scholar
  17. Gudmundsson, M., & Hafsteinsson, H. (2005). Effect of high intensity electric field pulses on solid foods. In D. W. Sun (Ed.), Emerging technologies for food processing (pp. 141-153): Academic Press.Google Scholar
  18. Ha, M. H. (2012). Characterisation of cysteine proteases and their catalytic impact on meat myofibril and meat connective tissue proteins. Master of Science, University of Otago.Google Scholar
  19. Ha, M. H., Bekhit, A. E. D., Carne, A., & Hopkins, D. L. (2013). Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins. Food Chemistry, 136, 989–998.CrossRefGoogle Scholar
  20. Han, J., Morton, J. D., Bekhit, A. E. D., & Sedcole, J. R. (2009). Pre-rigor infusion with kiwifruit juice improves lamb tenderness. Meat Science, 82(3), 324–330.CrossRefGoogle Scholar
  21. Ho, C. Y., Stromer, M. H., & Robson, R. M. (1994). Identification of the 30 kDa polypeptide in post mortem skeletal muscle as a degradation product of troponin-T. Biochimie, 76(5), 369–375.CrossRefGoogle Scholar
  22. Huff-Lonergan, E., & Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Science, 71(1), 194–204.CrossRefGoogle Scholar
  23. Hwang, I. H., & Thompson, J. M. (2001). The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. Meat Science, 58(2), 135–144.CrossRefGoogle Scholar
  24. Hwang, I. H., & Thompson, J. M. (2002). A technique to quantify the extent of postmortem degradation of meat ultrastructure. Journal of Asian Australasian Animal Science, 58, 167–174.Google Scholar
  25. Jaeger, H., Ana Balasa, A., & Knorr, D. (2008). Food industry applications for pulsed electric fields. In E. Vorobiev & N. Lebovka (Eds.), Electrotechnologies for extraction from food plants and biomaterials (pp. 181–216). New York: Springer Science + Business Media, LLC.Google Scholar
  26. King, D. A., Voges, K. L., Hale, D. S., Waldron, D. F., Taylor, C. A., & Savell, J. W. (2004). High voltage electrical stimulation enhances muscle tenderness, increases aging response, and improves muscle color from cabrito carcasses. Meat Science, 68, 529–535.CrossRefGoogle Scholar
  27. Kristensen, L., & Purslow, P. P. (2001). The effect of ageing on the water-holding capacity of pork: role of cytoskeletal proteins. Meat Science, 58, 17–23.CrossRefGoogle Scholar
  28. Li, C. B., Chen, Y. J., Xu, X. L., Huang, M., Hu, T. J., & Zhou, G. H. (2006). Effects of low-voltage electrical stimulation and rapid chilling on meat quality characteristics of Chinese yellow crossbred bulls. Meat Science, 72, 9–17.CrossRefGoogle Scholar
  29. Luo, X., Zhu, Y., & Zhou, G. H. (2008). Electron microscopy of contractile bands in low voltage electrical stimulation beef. Meat Science, 80, 948–951.CrossRefGoogle Scholar
  30. Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71(1), 100–121.CrossRefGoogle Scholar
  31. Marino, R., Albenzio, M., Malva, A. D., Santillo, A., Loizzo, P., & Sevi, A. (2013). Proteolytic pattern of myofibrillar protein and meat tenderness as affected by breed and aging time. Meat Science, 95, 281–287.CrossRefGoogle Scholar
  32. McBride, M. A., & Parrish, J. F. C. (1977). The 30,000-dalton component of tender bovine longissimus muscle. Journal of Food Science, 42, 1627–1629.CrossRefGoogle Scholar
  33. McKenna, D. R., Maddock, D., & Savell, J. W. (2003). Water-holding and color characteristics of beef from electrically stimulated carcasses. Journal of Muscle Foods, 14(1), 33–49.CrossRefGoogle Scholar
  34. Midgley, J. & Small, A. (2006). Review of new and emerging technologies for red meat safety. http://www.meatupdate.csiro.au/new/Review%20of%20new%20and%20emerging%20technlogies%20for%20red%20meat%20safety.pdf.
  35. Mombeni, E. G., Mombeini, M. G., Figueiredo, L. C., Luciano, S. J. S., & Dias, D. T. (2013). Effects of high voltage electrical stimulation on the rate of pH decline, meat quality and color stability in chilled beef carcasses. Asian Pacific Journal of Tropical Biomedicine, 3(9), 716–719.CrossRefGoogle Scholar
  36. Morrissey, P. A., Sheehy, P. J. A., Galvin, K., Kerry, J. P., & Buckley, D. J. (1998). Lipid stability in meat and meat products. Meat Science, 49(1), 73–86.CrossRefGoogle Scholar
  37. O’Dowd, L. P., Arimi, J. M., Noci, F., Cronin, D. A., & Lyng, J. G. (2013). An assessment of the effect of pulsed electrical fields on tenderness and selected quality attributes of post rigor beef muscle. Meat Science, 93, 303–309.CrossRefGoogle Scholar
  38. O'Halloran, G. R., Troy, D. J., & Buckley, D. J. (1997). The relationship between early post-mortem pH and the tenderisation of beef muscles. Meat Science, 45(2), 239–251.CrossRefGoogle Scholar
  39. Pearce, K. L., Rosenvold, K., Andersen, H. J., & Hopkins, D. L. (2011). Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—a review. Meat Science, 89, 111–124.CrossRefGoogle Scholar
  40. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
  41. Ruiz de Huidobro, F., Miguel, E., Onega, E., & Blázquez, B. (2003). Changes in meat quality characteristics of bovine meat during the first 6 days post-mortem. Meat Science, 65(4), 1439–1446.CrossRefGoogle Scholar
  42. Simmons, N. J., Daly, C. C., Cummings, T. L., Morgan, S. K., Johnson, N. V., & Lombard, A. (2008). Reassessing the principles of electrical stimulation. Meat Science, 80(1), 110–122.CrossRefGoogle Scholar
  43. Smith, G. C., Belk, K. E., Sofos, J. N., Tatum, J. D., & Williams, S. N. (2000). Economic implications of improved color stability in beef. In E. A. Decker, C. Faustman, & C. J. Lopez-Bote (Eds.), Antioxidants in muscle foods: Nutritional strategies to improve quality (pp. 397–426). New York: Wiley Interscience.Google Scholar
  44. Stoeva, S., Byrne, C. E., Mullen, A. M., Troy, D. J., & Voelter, W. (2000). Isolation and identification of proteolytic fragments from TCA soluble extracts of bovine M. longissimus dorsi. Food Chemistry, 69, 365–370.CrossRefGoogle Scholar
  45. Strydom, P. E., & Frylinck, L. (2014). Minimal electrical stimulation is effective in low stressed and well fed cattle. Meat Science, 96, 790–798.CrossRefGoogle Scholar
  46. Sun, X., Chen, K. J., Berg, E. P., Newman, D. J., Schwartz, C. A., & Keller, W. L. (2014). Prediction of troponin-T degradation using color image texture features in 10 d aged beef longissimus steaks. Meat Science, 96, 837–842.CrossRefGoogle Scholar
  47. Takahashi, G., Wang, S. M., Lochner, J. V., & Marsh, B. B. (1987). Effects of 2-Hz and 60-Hz electrical stimulation on the microstructure of beef. Meat Science, 19, 65–76.CrossRefGoogle Scholar
  48. Töpfl, S. (2006). Pulsed electric fields (PEF) for permeabilization of cell membranes in food- and bioprocessing: applications, process and equipment design and cost analysis. Germany: PhD thesis, Universität Berlin.Google Scholar
  49. Töpfl, S., & Heinz, V. (2007). Application of pulsed electric fields to improve mass transfer in dry cured meat products. Fleischwirtschaft International, 22, 62–64.Google Scholar
  50. Wiklund, E., Stevenson-Barry, J. M., Duncan, S. J., & Littlejohn, R. P. (2001). Electrical stimulation of red deer (Cervus elaphus) carcasses — effects on rate of pH- decline, meat tenderness, colour stability and water-holding capacity. Meat Science, 59(2), 211–220.CrossRefGoogle Scholar
  51. Yates, L. D., Dutson, T. R., Caldwell, J., & Carpenter, Z. L. (1983). Effect of temperature and pH on the post-mortem degradation of myofibrillar proteins. Meat Science, 9, 157–179.CrossRefGoogle Scholar
  52. Zhang, Q., Barbosa-Canovas, G. V., & Swanson, B. G. (1995). Engineering aspects of pulsed electric field pasteurisation. Journal of Food Engineering, 25, 261–281.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Via Suwandy
    • 1
  • Alan Carne
    • 2
  • Remy van de Ven
    • 3
  • Alaa El-Din A. Bekhit
    • 1
  • David L. Hopkins
    • 4
  1. 1.Department of Food ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  3. 3.NSW Department of Primary IndustriesOrange Agricultural InstituteOrangeAustralia
  4. 4.NSW Department of Primary IndustriesCentre for Red Meat and Sheep DevelopmentCowraAustralia

Personalised recommendations