Food and Bioprocess Technology

, Volume 8, Issue 5, pp 1139–1148 | Cite as

Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-compounds from Fermented Grape Pomace

  • Francisco J. Barba
  • Sylène Brianceau
  • Mohammad Turk
  • Nadia Boussetta
  • Eugène Vorobiev
Original Paper


The aim of this study is to compare alternative treatments on solvent-free extraction of high added value components from fermented grape pomace. Ultrasounds (US), pulsed electric fields (PEF) and high voltage electric discharges (HVED), which are physical treatments able to induce cell damages, were applied on aqueous suspensions of grape pomace. The efficiency of these technologies for phenolic compounds extraction, and particularly for anthocyanins recovery, was evaluated throughout the treatments at equivalent cell disintegration indexes (Z). HVED proved to be the most interesting technique to achieve higher phenolic compounds recovery with lower energy requirement than PEF and US at the same values of Z. However, HVED was less selective than PEF and US regarding the amount of anthocyanins recovered. At equivalent cell disintegration of Z = 0.8, PEF remarkably increased the extraction yield of total anthocyanins up to 22 and 55 % in comparison with US and HVED-assisted extractions. At this Z value, the ratio of total anthocyanins to TPC extracted reaches the respective values of 41.7, 34.9 and 14.1 % for PEF, US and HVED, thus demonstrating interesting differences of selectivity of the treatments.


High voltage electric discharges Pulsed electric fields Ultrasounds Cell disintegration Polyphenols Anthocyanins Selectivity 



This study received financial support from the Agence National de Recherche under the first transnational call of ECO-INNOVERA (ERA-NET). The authors would like to thank the Ecoled’ingénieurs de Changins (EIC, Switzerland), and particularly Ms. Anna-Claire Silvestri for providing grape pomace. F.J. Barba wishes to thank the Valencian Autonomous Government (Conselleríad’Educació, Cultura I Esport. Generalitat Valenciana) for the postdoctoral fellowship of the VALi+d program “ProgramaVALi+d per a investigadors en fase postdoctoral 2013” (APOSTD/2013/092).


  1. Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196, 67–76.CrossRefGoogle Scholar
  2. Balachandran, S., Kentish, S. E., Mawson, R., & Ashokkumar, M. (2006). Ultrasonic enhancement of the supercritical extraction from ginger. Ultrasonics Sonochemistry, 13(6), 471–479.CrossRefGoogle Scholar
  3. Barba, F. J., Esteve, M. J., Tedeschi, P., Brandolini, V., & Frígola, A. (2013). A comparative study of the analysis of antioxidant activities of liquid foods employing spectrophotometric, fluorometric, and chemiluminescent methods. Food Analytical Methods, 6(1), 317–327.CrossRefGoogle Scholar
  4. Barbosa-Cánovas, G. V., Pothakamury, U. R., Gongora-Nieto, M. M., & Swanson, B. G. (1999). Preservation of foods with pulsed electric fields. San Diego: Academic.Google Scholar
  5. Boussetta, N. (2011). Intensification de l'extraction des polyphénols par électrotechnologies pour la valorisation des marcs de Champagne. Université de Technologie de Compiègne.Google Scholar
  6. Boussetta, N., & Vorobiev, E. (2014). Extraction of valuable biocompounds assisted by high voltage electrical discharges: a review. Comptes Rendus Chimie.Google Scholar
  7. Boussetta, N., Lebovka, N., Vorobiev, E., Adenier, H., Bedel-Cloutour, C., & Lanoiselle, J.-L. (2009). Electrically assisted extraction of soluble matter from Chardonnay grape skins for polyphenol recovery. Journal of Agricultural and Food Chemistry, 57(4), 1491–1497.CrossRefGoogle Scholar
  8. Boussetta, N., Reess, T., Vorobiev, E., & Lanoisellé, J.-L. (2011a). Pulsed electrical discharges: Principles and application to extraction of biocompounds.Google Scholar
  9. Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A., & Lanoisellé, J. L. (2011b). Valorisation of grape pomace by the extraction of phenolic antioxidants: application of high voltage electrical discharges. Food Chemistry, 128(2), 364–370.CrossRefGoogle Scholar
  10. Boussetta, N., Vorobiev, E., Le, L. H., Cordin-Falcimaigne, A., & Lanoisellé, J. L. (2012a). Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT - Food Science and Technology, 46(1), 127–134.CrossRefGoogle Scholar
  11. Boussetta, N., Vorobiev, E., Reess, T., De Ferron, A., Pecastaing, L., Ruscassié, R., & Lanoisellé, J. L. (2012b). Scale-up of high voltage electrical discharges for polyphenols extraction from grape pomace: effect of the dynamic shock waves. Innovative Food Science & Emerging Technologies, 16, 129–136.CrossRefGoogle Scholar
  12. Boussetta, N., Lesaint, O., & Vorobiev, E. (2013a). A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innovative Food Science & Emerging Technologies, 19, 124–132.CrossRefGoogle Scholar
  13. Boussetta, N., Turk, M. F., De Taeye, C., Larondelle, Y., Lanoisellé, J., & Vorobiev, E. (2013b). Effect of high voltage electrical discharges, heating and ethanol concentration on the extraction of total polyphenols and lignans from flaxseed cake. Industrial Crops and Products, 49, 690–696.CrossRefGoogle Scholar
  14. Brianceau, S., Turk, M., Vitrac, X., & Vorobiev, E. (2014). Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innovative Food Science & Emerging Technologies.Google Scholar
  15. Chemat, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835.CrossRefGoogle Scholar
  16. Cholet, C. L., Delsart, C., Petrel, M., Gontier, E., Grimi, N., L’Hyvernay, A., Ghidossi, R., Vorobiev, E., Mietton-Peuchot, M., & Geny, L. (2014). Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides. Journal of Agricultural and Food Chemistry, 62(13), 2925–2934.CrossRefGoogle Scholar
  17. Conn, S., Zhang, W., & Franco, C. (2003). Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture. Biotechnology Letters, 25(11), 835–839.CrossRefGoogle Scholar
  18. Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science & Emerging Technologies, 9(1), 85–91.CrossRefGoogle Scholar
  19. Corrales, M., García, A. F., Butz, P., & Tauscher, B. (2009). Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering, 90(4), 415–421.CrossRefGoogle Scholar
  20. Craft, B. D., Kerrihard, A. L., Amarowicz, R., & Pegg, R. B. (2012). Phenol‐based antioxidants and the in vitro methods used for their assessment. Comprehensive Reviews in Food Science and Food Safety, 11(2), 148–173.CrossRefGoogle Scholar
  21. Delsart, C., Cholet, C., Ghidossi, R., Grimi, N., Gontier, E., Gény, L., Vorobiev, E., & Mietton-Peuchot, M. (2014). Effects of pulsed electric fields on Cabernet Sauvignon grape berries and on the characteristics of wines. Food and Bioprocess Technology, 7(2), 424–436.CrossRefGoogle Scholar
  22. Donsì, F., Ferrari, G., & Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews, 2(2), 109–130.CrossRefGoogle Scholar
  23. Fava, J., Hodara, K., Nieto, A., Guerrero, S., Alzamora, S. M., & Castro, M. A. (2011). Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV–C irradiation and ultrasound. Food Research International, 44(9), 2938–2948.CrossRefGoogle Scholar
  24. González-Paramás, A. M., Esteban-Ruano, S., Santos-Buelga, C., de Pascual-Teresa, S., & Rivas-Gonzalo, J. C. (2004). Flavanol content and antioxidant activity in winery byproducts. Journal of Agricultural and Food Chemistry, 52(2), 234–238.CrossRefGoogle Scholar
  25. Gros, C., Lanoisellé, J., & Vorobiev, E. (2003). Towards an alternative extraction process for linseed oil. Chemical Engineering Research and Design, 81(9), 1059–1065.CrossRefGoogle Scholar
  26. Joana Gil‐Chávez, G., Villa, J. A., Fernando Ayala‐Zavala, J., Basilio Heredia, J., Sepulveda, D., Yahia, E. M., & González‐Aguilar, G. A. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Comprehensive Reviews in Food Science and Food Safety, 12(1), 5–23.CrossRefGoogle Scholar
  27. Kähkönen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 51(3), 628–633.CrossRefGoogle Scholar
  28. Knorr, D., Angersbach, A., Eshtiaghi, M. N., Heinz, V., & Lee, D.-U. (2001). Processing concepts based on high intensity electric field pulses. Trends in Food Science & Technology, 12(3), 129–135.CrossRefGoogle Scholar
  29. Kotnik, T., Kramar, P., Pucihar, G., Miklavcic, D., & Tarek, M. (2012). Cell membrane electroporation-part 1: the phenomenon. IEEE Electrical Insulation Magazine, 28(5), 14–23.CrossRefGoogle Scholar
  30. Krishnaswamy, K., Orsat, V., Gariépy, Y., & Thangavel, K. (2013). Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food and Bioprocess Technology, 6(2), 441–455.CrossRefGoogle Scholar
  31. Le Bourvellec, C., & Renard, C. (2005). Non-covalent interaction between procyanidins and apple cell wall material. Part II: quantification and impact of cell wall drying. Biochimica et Biophysica Acta (BBA) - General Subjects, 1725(1), 1–9.CrossRefGoogle Scholar
  32. Le Bourvellec, C., & Renard, C. M. G. C. (2011). Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Critical Reviews in Food Science and Nutrition, 52(3), 213–248.CrossRefGoogle Scholar
  33. Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2001). Pulsed electric field breakage of cellular tissues: visualisation of percolative properties. Innovative Food Science & Emerging Technologies, 2(2), 113–125.CrossRefGoogle Scholar
  34. Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54(4), 337–346.CrossRefGoogle Scholar
  35. Li, H., Pordesimo, L., & Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37(7), 731–738.CrossRefGoogle Scholar
  36. Llobera, A., & Cañellas, J. (2008). Antioxidant activity and dietary fibre of Prensal Blanc white grape (Vitis vinifera) by‐products. International Journal of Food Science & Technology., 43(11), 1953–1959.CrossRefGoogle Scholar
  37. Locke, B., Sato, M., Sunka, P., Hoffmann, M., & Chang, J.-S. (2006). Electrohydraulic discharge and nonthermal plasma for water treatment. Industrial & Engineering Chemistry Research, 45(3), 882–905.CrossRefGoogle Scholar
  38. Markham, K. R., Gould, K. S., Winefield, C. S., Mitchell, K. A., Bloor, S. J., & Boase, M. R. (2000). Anthocyanic vacuolar inclusions—their nature and significance in flower colouration. Phytochemistry, 55(4), 327–336.CrossRefGoogle Scholar
  39. Novak, I., Janeiro, P., Seruga, M., & Oliveira-Brett, A. M. (2008). Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection. Analytica Chimica Acta, 630(2), 107–115.CrossRefGoogle Scholar
  40. Parry, J. W., Li, H., Liu, J.-R., Zhou, K., Zhang, L., & Ren, S. (2011). Antioxidant activity, antiproliferation of colon cancer cells, and chemical composition of grape pomace. Food and Nutrition Sciences, 2, 530–540.CrossRefGoogle Scholar
  41. Pereira, C. G., & Meireles, M. A. A. (2010). Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3(3), 340–372.CrossRefGoogle Scholar
  42. Pinelo, M., Arnous, A., & Meyer, A. S. (2006). Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends in Food Science & Technology, 17(11), 579–590.CrossRefGoogle Scholar
  43. Pliquett, U. (2010). Bioimpedance: a review for food processing. Food Engineering Reviews, 2(2), 74–94.CrossRefGoogle Scholar
  44. Quideau, S., Deffieux, D., Douat‐Casassus, C., & Pouysegu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition, 50(3), 586–621.CrossRefGoogle Scholar
  45. Rajha, H. N., Boussetta, N., Louka, N., Maroun, R. G., & Vorobiev, E. (2014) A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Research International.Google Scholar
  46. Ribéreau-Gayon, P., Dubourdieu, D., & Donèche, B. (2012) Handbook of oenology. In The chemistry of wine. Stabilization and treatments (vol 2. 2nd edn. pp. 451). Wiley.Google Scholar
  47. Routray, W., & Orsat, V. (2012). Microwave-assisted extraction of flavonoids: a review. Food and Bioprocess Technology, 5(2), 409–424.CrossRefGoogle Scholar
  48. Stintzing, F. C., Stintzing, A. S., Carle, R., Frei, B., & Wrolstad, R. E. (2002). Color and antioxidant properties of cyanidin-based anthocyanin pigments. Journal of Agricultural and Food Chemistry, 50(21), 6172–6181.CrossRefGoogle Scholar
  49. Toepfl, S., Mathys, A., Heinz, V., & Knorr, D. (2006). Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Reviews International, 22(4), 405–423.CrossRefGoogle Scholar
  50. Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innovative Food Science & Emerging Technologies, 9(2), 161–169.CrossRefGoogle Scholar
  51. Vorobiev, E., & Lebovka, N. (2008). Electrotechnologies for extraction from food plants and biomaterials. New York: Springer.Google Scholar
  52. Vorobiev, E., & Lebovka, N. (2009) Pulsed-electric-fields-induced effects in plant tissues: Fundamental aspects and perspectives of applications. In Electrotechnologies for extraction from food plants and biomaterials (pp. 39–81).Google Scholar
  53. Vorobiev, E., & Lebovka, N. (2010). Enhanced extraction from solid foods and biosuspensions by pulsed electrical energy. Food Engineering Reviews, 2(2), 95–108.CrossRefGoogle Scholar
  54. Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology Biochemistry and Pharmacology, 105, 175–256.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Francisco J. Barba
    • 1
    • 2
  • Sylène Brianceau
    • 1
  • Mohammad Turk
    • 1
    • 3
  • Nadia Boussetta
    • 1
  • Eugène Vorobiev
    • 1
  1. 1.Centre de Recherche de Royallieu, Département de Génie des Procédés Industriels, Unité Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR)Université de Technologie de CompiègneCompiègne CedexFrance
  2. 2.Nutrition and Food Science Area, Faculty of PharmacyUniversitat de ValènciaValènciaSpain
  3. 3.Ecole Supérieure de Chimie Organique et Minérale, Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR)CompiègneFrance

Personalised recommendations