Food and Bioprocess Technology

, Volume 8, Issue 6, pp 1305–1318 | Cite as

The Effect of Rapeseed Protein Structural Modification on Microstructural Properties of Peptide Microcapsules

  • Zhigao Wang
  • Xingrong JuEmail author
  • Rong HeEmail author
  • Jian Yuan
  • Lifeng Wang
Original Paper


This study investigated the chemical, enzymatic, and physical modifications of rapeseed protein isolate (RPI) to improve its mechanical properties for its use as wall materials for rapeseed peptide (RP) microencapsulation by spray drying. The objective was to determine the effect of protein modification and the influence of the core/shell ratio on microcapsule properties. Results obtained demonstrated that microcapsules derived from the hydrolysis of RPI as wall material showed lower encapsulation efficiency (NE) than the native RPI microcapsules (63 ± 1.0–84 ± 1.7 and 91.4 ± 1.4 %, respectively). Conversely, acylated (degree of acylation (DA) of 47 %) and high pressure (HP) 400 MPa treatment of RPI as wall materials allowed a higher NE to be up to 99 ± 2.2 and 94 ± 1.3 %, respectively. Moreover, the data of the IR spectra curve fitting showed that wall materials obtained from hydrolyzed RPI resulted in greater loss of total secondary structures when compared to the wall material from acylated, HP-treated, and native RPI. Nanomechanical experiments also indicated that the microcapsules from hydrolyzed RPI underwent remarkable softening with an associated drop in Young’s modulus value (245 MPa) when compared to microcapsules with acylated and HP-treated RPI (450 and 310 MPa, respectively). The above results suggested that there might be an excellent correlation between IR spectra curve fittings and the nanomechanical data depicting the microstructural properties of microcapsules. In addition, higher microcapsule size and NE were observed while decreasing the spray-drying yield as the RP concentration was increased.


Microcapsules Rapeseed protein isolate Acylation Hydrolysis High pressure Mechanical characterization 



Funding for this work was provided through the Agricultural Science and Technology Innovation Capital of Jiangsu Province (project no. CX (13) 3088) and Universities Natural Science Research Project of Jiangsu Province (project no. 14KJ13550003). The authors acknowledge the financial support of the Natural Science Foundation of Jiangsu Province of China (BK20131435) and the Special Project of State Grain Industry (201413007).


  1. Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. England: Elsevier.Google Scholar
  2. Ahmed, J., Ayad, A., Ramaswamy, H. S., Alli, I., & Shao, Y. (2007). Dynamic viscoelastic behavior of high pressure treated soybean protein isolate dispersions. International Journal of Food Properties, 10, 397–411.CrossRefGoogle Scholar
  3. Amarowicz, R. (2010). Modification of emulsifying properties of food proteins by enzymatic hydrolysis. European Journal of Lipid Science and Technology, 112, 695–696.CrossRefGoogle Scholar
  4. Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S., & Marc, I. (2007). Hydrolysis of rapeseed protein isolates: kinetics, characterization and functional properties of hydrolysates. Process Biochemistry, 42(10), 1419–1428.CrossRefGoogle Scholar
  5. Chao, D., He, R., Jung, S., & Aluko, R. E. (2013). Effect of pressure or temperature pretreatment of isolated pea protein on properties of the enzymatic hydrolysates. Food Research International, 54(2), 1528–1534.CrossRefGoogle Scholar
  6. Chel-Guerrero, L., Pérez-Flores, V., Betancur-Ancona, D., & Davila-Ortiz, G. (2002). Functional properties of flours and protein isolates from Phaseolus lunatus and Canavalia ensiformis seeds. Journal of Agricultural and Food Chemistry, 50, 584–591.CrossRefGoogle Scholar
  7. De Graaf, L., Harmsen, P., Vereijken, J., & Mönikes, M. (2001). Requirements for non-food applications of pea proteins: a review. Food/Nahrung, 45, 408–411.CrossRefGoogle Scholar
  8. De Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20, 292–302.CrossRefGoogle Scholar
  9. DeMan, J. M. (1999). Principles of food chemistry. New York: Springer.CrossRefGoogle Scholar
  10. Dong, X. Y., Guo, L. L., Wei, F., Li, J. F., Jiang, M. L., Li, G. M., Zhao, Y. D., & Chen, H. (2011). Some characteristics and functional properties of rapeseed protein prepared by ultrasonication, ultrafiltration and isoelectric precipitation. Journal of the Science of Food and Agriculture, 91(8), 1488–1498.CrossRefGoogle Scholar
  11. Elizondo, E., Sala, S., Imbuluzqueta, E., González, D., Blanco-Prieto, M. J., Gamazo, C., Ventosa, N., & Veciana, J. (2011). High loading of gentamicin in bioadhesive PVM/MA nanostructured microparticles using compressed carbon-dioxide. Pharmaceutical Research, 28, 309–321.CrossRefGoogle Scholar
  12. Fahs, A., & Louarn, G. (2013). Plant protein interactions studied using AFM force spectroscopy: nanomechanical and adhesion properties. Physical Chemistry Chemical Physics, 15, 11339–11348.CrossRefGoogle Scholar
  13. Favaro-Trindade, C., Santana, A., Monterrey-Quintero, E., Trindade, M., & Netto, F. (2010). The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloids, 24, 336–340.CrossRefGoogle Scholar
  14. Fleddermann, M., Fechner, A., Rößler, A., Bähr, M., Pastor, A., Liebert, F., & Jahreis, G. (2013). Nutritional evaluation of rapeseed protein compared to soy protein for quality, plasma amino acids, and nitrogen balance—a randomized cross-over intervention study in humans. Clinical Nutrition, 32, 519–526.CrossRefGoogle Scholar
  15. Gaonkar, A., Vasisht, N., Khare, A., & Sobel, R. (2014). Microencapsulation in the food industry: a practical implementation guide. Amsterdam: Elsevier.Google Scholar
  16. Gibbs, F., Kermasha, S., Alli, I., & Mulligan, B. (1999). Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition, 50(3), 213–224.CrossRefGoogle Scholar
  17. Gruener, L., & Ismond, M. (1997). Effects of acetylation and succinylation on the functional properties of the canola 12S globulin. Food Chemistry, 60, 513–520.CrossRefGoogle Scholar
  18. Guan, X., Yao, H., Chen, Z., Shan, L., & Zhang, M. (2007). Some functional properties of oat bran protein concentrate modified by trypsin. Food Chemistry, 101, 163–170.CrossRefGoogle Scholar
  19. He, R., Alashi, A., Malomo, S. A., Girgih, A. T., Chao, D., Ju, X., & Aluko, R. E. (2013). Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chemistry, 141, 153–159.CrossRefGoogle Scholar
  20. He, R., He, H. Y., Chao, D. F., Ju, X. R., & Aluko, R. (2014). Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food Bioprocess Technology, 7, 1344–1353.CrossRefGoogle Scholar
  21. Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008a). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26, 816–835.CrossRefGoogle Scholar
  22. Jafari, S. M., Assadpoor, E., Bhandari, B., & He, Y. (2008b). Nanoparticle encapsulation of fish oil by spray drying. Food Research International, 41, 172–183.CrossRefGoogle Scholar
  23. Jang, S., Lim, G. O., & Song, K. B. (2011). Preparation and mechanical properties of edible rapeseed protein films. Journal of Food Science, 76, C218–C223.CrossRefGoogle Scholar
  24. Jiang, C., Markutsya, S., Pikus, Y., & Tsukruk, V. V. (2004). Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Materials, 3, 721–728.CrossRefGoogle Scholar
  25. Junyaprasert, V. B., Mitrevej, A., Sinchaipanid, N., Boonme, P., & Wurster, D. E. (2001). Effect of process variables on the microencapsulation of vitamin A palmitate by gelatin-acacia coacervation. Drug Development and Industrial Pharmacy, 27, 561–566.CrossRefGoogle Scholar
  26. Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187–197.CrossRefGoogle Scholar
  27. Karayannidou, A., Makri, E., Papalamprou, E., Doxastakis, G., Vaintraub, I., Lapteva, N., & Articov, G. (2007). Limited proteolysis as a tool for the improvement of the functionality of sunflower (Helianthus annus L.) protein isolates produced by seeds or industrial by-products (solvent cake). Food Chemistry, 104, 1728–1733.CrossRefGoogle Scholar
  28. Kong, X., Guo, M., Hua, Y., Cao, D., & Zhang, C. (2008). Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresource Technology, 99, 8873–8879.CrossRefGoogle Scholar
  29. Krause, J. P. (2002). Comparison of the effect of acylation and phosphorylation on surface pressure, surface potential and foaming properties of protein isolates from rapeseed (Brassica napus). Industrial Crops and Products, 15, 221–228.CrossRefGoogle Scholar
  30. Lam, P. L., & Gambari, R. (2014). Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. Journal of Controlled Release, 178, 25–45.CrossRefGoogle Scholar
  31. Lamothe, P. J., & McCormick, P. G. (1972). Influence of acidity on the reaction of ninhydrin with amino acids. Analytical Chemistry, 44, 821–825.CrossRefGoogle Scholar
  32. Lavalle, P., Voegel, J. C., Vautier, D., Senger, B., Schaaf, P., & Ball, V. (2011). Dynamic aspects of films prepared by a sequential deposition of species: perspectives for smart and responsive materials. Advanced Materials, 23, 1191–1221.CrossRefGoogle Scholar
  33. Li, X.R. (2009). Microencapsulation properties of soy protein isolate. South China University of Technology, pp.16-17.Google Scholar
  34. Li, H., Zhu, K., Zhou, H., & Peng, W. (2012). Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula. Food Chemistry, 132, 808–814.CrossRefGoogle Scholar
  35. Lisunova, M. O., Drachuk, I., Shchepelina, O. A., Anderson, K. D., & Tsukruk, V. V. (2011). Direct probing of micromechanical properties of hydrogen-bonded layer-by-layer microcapsule shells with different chemical compositions. Langmuir, 27, 11157–11165.CrossRefGoogle Scholar
  36. Markutsya, S., Jiang, C., Pikus, Y., & Tsukruk, V. V. (2005). Freely suspended layer-by-layer nanomembranes: testing micromechanical properties. Advanced Functional Materials, 15, 771–780.CrossRefGoogle Scholar
  37. Markwell, M. A. K., Haas, S. M., Bieber, L., & Tolbert, N. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry, 87, 206–210.CrossRefGoogle Scholar
  38. Matemu, A. O., Kayahara, H., Murasawa, H., Katayama, S., & Nakamura, S. (2011). Improved emulsifying properties of soy proteins by acylation with saturated fatty acids. Food Chemistry, 124, 596–602.CrossRefGoogle Scholar
  39. Mateos-Aparicio, I., Redondo-Cuenca, A., Villanueva-Suárez, M., & Zapata-Revilla, M. (2008). Soybean, a promising health source. Nutrición Hospitalaria, 23, 305.Google Scholar
  40. Nesterenko, A., Alric, I., Silvestre, F., & Durrieu, V. (2012). Influence of soy protein’s structural modifications on their microencapsulation properties: α-tocopherol microparticle preparation. Food Research International, 48, 387–396.CrossRefGoogle Scholar
  41. Nesterenko, A., Alric, I., Silvestre, F., & Durrieu, V. (2013a). Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Industrial Crops and Products, 42, 469–479.CrossRefGoogle Scholar
  42. Nesterenko, A., Alric, I., Violleau, F., Silvestre, F., & Durrieu, V. (2013b). A new way of valorizing biomaterials: the use of sunflower protein for α-tocopherol microencapsulation. Food Research International, 53, 115–124.CrossRefGoogle Scholar
  43. Nunes, M., Batista, P., Raymundo, A., Alves, M., & Sousa, I. (2003). Vegetable proteins and milk puddings. Colloids and Surfaces B: Biointerfaces, 31, 21–29.CrossRefGoogle Scholar
  44. Pastuszewska, B., Jabłecki, G., Świȩch, E., Buraczewska, L., & Ochtabińska, A. (2000). Nutritional value of rapeseed meal containing lecithin gums precipitated with citric acid. Animal Feed Science and Technology, 86, 117–123.CrossRefGoogle Scholar
  45. Patel, A. R., Heussen, P., Hazekamp, J., Drost, E., & Velikov, K. P. (2012). Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chemistry, 133, 423–429.CrossRefGoogle Scholar
  46. Pierucci, A. P. T., Andrade, L. R., Baptista, E. B., Volpato, N. M., & Rocha-Leão, M. H. M. (2006). New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Journal of Microencapsulation, 23, 654–662.CrossRefGoogle Scholar
  47. Pitalua, E., Jimenez, M., Vernon-Carter, E. J., & Beristain, C. I. (2010). Antioxidative activity of microcapsules with beetroot juice using gum arabic as wall material. Food and Bioproducts Processing, 88(C2–3), 253–258.CrossRefGoogle Scholar
  48. Rascón, M. P., Beristain, C. I., García, H. S., & Salgado, M. A. (2011). Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum arabic and soy protein isolate as wall materials. LWT--Food Science and Technology, 44, 549–557.CrossRefGoogle Scholar
  49. Schwenke, K. (1994). Rapeseed proteins. New and developing sources of food proteins. Springer, pp. 281-306.Google Scholar
  50. Tan, S. H., Mailer, R. J., Blanchard, C. L., & Agboola, S. O. (2011). Canola proteins for human consumption: extraction, profile, and functional properties. Journal of Food Science, 76, R16–R28.CrossRefGoogle Scholar
  51. Van Vliet, T., Martin, A. H., & Bos, M. A. (2002). Gelation and interfacial behaviour of vegetable proteins. Current Opinion In Colloid & Interface Science, 7, 462–468.CrossRefGoogle Scholar
  52. Wang, R., Tian, Z., & Chen, L. (2011). A novel process for microencapsulation of fish oil with barley protein. Food Research International, 44, 2735–2741.CrossRefGoogle Scholar
  53. Wu, L. C., Laub, P. B., Elove, G. A., Carey, J., & Roder, H. (1993). A noncovalent peptide complex as a model for an early folding intermediate of cytochrome c. Biochemistry, 32, 10271–10276.CrossRefGoogle Scholar
  54. Yin, S.-W., Tang, C.-H., Wen, Q.-B., Yang, X.-Q., & Yuan, D.-B. (2010). The relationships between physicochemical properties and conformational features of succinylated and acetylated kidney bean (Phaseolus vulgaris L.) protein isolates. Food Research International, 43, 730–738.CrossRefGoogle Scholar
  55. Yoshie-Stark, Y., Wada, Y., Schott, M., & Wäsche, A. (2006). Functional and bioactive properties of rapeseed protein concentrates and sensory analysis of food application with rapeseed protein concentrates. LWT--Food Science and Technology, 39, 503–512.CrossRefGoogle Scholar
  56. Zandomeneghi, G., Krebs, M. R., McCammon, M. G., & Fändrich, M. (2004). FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Science, 13, 3314–3321.CrossRefGoogle Scholar
  57. Zhao, Q., Xiong, H., Selomulya, C., Chen, X. D., Zhong, H., Wang, S., Sun, W., & Zhou, Q. (2012). Enzymatic hydrolysis of rice dreg protein: effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chemistry, 134, 1360–1367.CrossRefGoogle Scholar
  58. Zhao, J., Xiong, Y. L., & McNear, D. H. (2013). Changes in structural characteristics of antioxidative soy protein hydrolysates resulting from scavenging of hydroxyl radicals. Journal of Food Science, 78, C152–C159.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Food ScienceJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingPeople’s Republic of China

Personalised recommendations