Advertisement

Food and Bioprocess Technology

, Volume 8, Issue 5, pp 1063–1075 | Cite as

Inhibitory Effect of the Hybrid Bacteriocin Ent35-MccV on the Growth of Escherichia coli and Listeria monocytogenes in Model and Food Systems

  • Leonardo Acuña
  • Natalia S. Corbalan
  • Inmaculada C. Fernandez-No
  • Roberto D. Morero
  • Jorge Barros-Velazquez
  • Augusto BellomioEmail author
Original Paper

Abstract

Bacteriocins are being used as new food biopreservative agents. In general, bacteriocins produced by Gram-positive bacteria are active against other Gram-positive. Basically, the same principle applies to those produced by Gram-negative bacteria. They have a restricted spectrum of action against related bacteria to those that produce the bacteriocin. Therefore, other hurdles or chemical preservatives are necessary to apply to broaden the spectrum of action of bacteriocins in foods. This is a further and deeper study of the possible application of the hybrid wide-spectrum bacteriocin named Ent35-MccV in food. Its antimicrobial activity was assayed in skim milk and patties as food models against Listeria monocytogenes and Escherichia coli. The influence of the temperature and digestive proteases on its biological activity and its antimicrobial activity was tested in vitro on a variety of pathogenic and food spoilage bacteria. The results showed that Ent35-MccV could inhibit the growth of both the Gram-positive L. monocytogenes and the Gram-negative E. coli in model food, and its activity was not affected by heating conditions including autoclaving. E. coli strains and Listeria spp. are the most affected bacteria, but Ent35-MccV showed antimicrobial activity against some strain of Salmonella spp., Staphylococcus epidermidis, Enterobacter aerogenes, Morganella morgani, Proteus mirabilis, Shigella boydii, Shigella flexneri, and Shigella sonnei.

Keywords

Microcin Bacteriocin Biopreservation Hybrid bacteriocin 

Notes

Acknowledgments

Financial support was provided by Grants PIP 0779 from CONICET, PICT 2998 from the Agencia Nacional de Promoción Científica y Tecnológica ANPCyT, and PIUNT D548/1 from UNT. This work was also funded by the project 10PXIB261045PR from Xunta de Galicia and by the project AGL2010-19646 from the Spanish Ministry of Science and Technology. The work of L. Acuña is supported by CONICET and USC-Santander fellowships. N. Corbalan is recipient of a CONICET fellowship. The work of I.C. Fernandez was supported by a “Lucas Labrada” research contract from Xunta de Galicia. The authors thank Carlos Franco and José M. Miranda for providing generously the E. coli, Salmonella spp., and L. monocytogenes food isolates.

References

  1. Acuña, L., Morero, R., & Bellomio, A. (2011). Development of wide-spectrum hybrid bacteriocins for food biopreservation. Food and Bioprocess Technology, 4(6), 1029–1049. doi: 10.1007/s11947-010-0465-7.CrossRefGoogle Scholar
  2. Acuña, L., Picariello, G., Sesma, F., Morero, R. D., & Bellomio, A. (2012). A new hybrid bacteriocin, Ent35–MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio, 2, 12–19. doi: 10.1016/j.fob.2012.01.002.CrossRefGoogle Scholar
  3. Benmechernene, Z., Fernandez-No, I., Kihal, M., Böhme, K., Calo-Mata, P., & Barros-Velazquez, J. (2013). Recent patents on bacteriocins: food and biomedical applications. Recent patents on DNA & gene sequences, 7(1), 66–73.Google Scholar
  4. Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A., & Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology, 1(1), 43–63. doi: 10.1007/s11947-007-0021-2.CrossRefGoogle Scholar
  5. Castellano, P., Belfiore, C., & Vignolo, G. (2011). Combination of bioprotective cultures with EDTA to reduce Escherichia coli O157:H7 in frozen ground-beef patties. Food Control, 22(8), 1461–1465. doi: 10.1016/j.foodcont.2011.02.018.
  6. Chalón, M. C., Acuña, L., Morero, R. D., Minahk, C. J., & Bellomio, A. (2012). Membrane-active bacteriocins to control Salmonella in foods: are they the definite hurdle? Food Research International, 45(2), 735–744. doi: 10.1016/j.foodres.2011.08.024.CrossRefGoogle Scholar
  7. Chen, C. M., Sebranek, J. G., Dickson, J. S., & Mendonca, A. F. (2004). Combining pediocin with postpackaging irradiation for control of Listeria monocytogenes on frankfurters. Journal of Food Protection, 67(9), 1866–1875.Google Scholar
  8. Chi-Zhang, Y., Yam, K. L., & Chikindas, M. L. (2004). Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. International Journal of Food Microbiology, 90(1), 15–22.CrossRefGoogle Scholar
  9. Chounou, N., Chouliara, E., Mexis, S. F., Stavros, K., Georgantelis, D., & Kontominas, M. G. (2013). Shelf life extension of ground meat stored at 4 °C using chitosan and an oxygen absorber. International Journal of Food Science and Technology, 48(1), 89–95.CrossRefGoogle Scholar
  10. Cintas, L. M., Casaus, P., Håvarstein, L. S., Hernández, P. E., & Nes, I. F. (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environmental Microbiology, 63(11), 4321–4330. Accessed 22 June 2010.Google Scholar
  11. Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71(1), 1–20. Accessed 25 January 2011.CrossRefGoogle Scholar
  12. Concha, R., Farías, M. E., Kümmerlin, R., & Sesma, F. (1999). Enterocin-35, a bacteriocin with activity against Listeria monocytogenes. Possible use in the food industry. Revista Latinoamericana de Microbiología, 41(3), 133–138.Google Scholar
  13. Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature reviews. Microbiology, 3(10), 777–788. doi: 10.1038/nrmicro1273.Google Scholar
  14. Delmore, J.R. (2009). Beef Shelf-life. http://www.beefresearch.org/cmdocs/beefresearch/pe/beef_shelf_life.pdf. Accessed 15 Dec 2014.
  15. Duquesne, S., Destoumieux-Garzón, D., Peduzzi, J., & Rebuffat, S. (2007). Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural Product Reports, 24(4), 708–734. doi: 10.1039/b516237h.CrossRefGoogle Scholar
  16. Farias, M. E., De Ruiz Holgado, A. A. P., & Sesma, F. (1994). Bacteriocin production by lactic acid bacteria isolated from regional cheeses: inhibition of foodborne pathogens. Journal of Food Protection, 57(11), 1013–1015.Google Scholar
  17. Fath, M. J., Zhang, L. H., Rush, J., & Kolter, R. (1994). Purification and characterization of colicin V from Escherichia coli culture supernatants. Biochemistry, 33(22), 6911–6917.CrossRefGoogle Scholar
  18. Fernández-No, I. C., Böhme, K., Gallardo, J. M., Barros-Velázquez, J., Cañas, B., & Calo-Mata, P. (2010). Differential characterization of biogenic amine-producing bacteria involved in food poisoning using MALDI-TOF mass fingerprinting. Electrophoresis, 31(6), 1116–1127. doi: 10.1002/elps.200900591.Google Scholar
  19. Gao, Y., Li, D., & Liu, X. (2013). Evaluation of the factors affecting the activity of sakacin C2 against E. coli in milk. Food Control, 30(2), 453–458. doi: 10.1016/j.foodcont.2012.07.013.CrossRefGoogle Scholar
  20. Giraffa, G., Neviani, E., & Tarelli, G. T. (1994). Antilisterial activity by enterococci in a model predicting the temperature evolution of Taleggio, an Italian soft cheese. Journal of Dairy Science, 77(5), 1176–1182. doi: 10.3168/jds.S0022-0302(94)77055-7.CrossRefGoogle Scholar
  21. Hammami, R., Zouhir, A., Le Lay, C., Ben Hamida, J., & Fliss, I. (2010). BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiology, 10, 22. doi: 10.1186/1471-2180-10-22.CrossRefGoogle Scholar
  22. Huq, T., Vu, K. D., Riedl, B., Bouchard, J., & Lacroix, M. (2015). Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiology, 46, 507–514. doi: 10.1016/j.fm.2014.09.013.CrossRefGoogle Scholar
  23. Jin, T., Liu, L., Sommers, C. H., Boyd, G., & Zhang, H. (2009). Radiation sensitization and post irradiation proliferation of Listeria monocytogenes on ready-to-eat deli meat in the presence of pectin-nisin films. Journal of Food Protection, 72(3), 644–649.Google Scholar
  24. Juneja, V. K., Altuntaş, E. G., Ayhan, K., Hwang, C.-A., Sheen, S., & Friedman, M. (2013). Predictive model for the reduction of heat resistance of Listeria monocytogenes in ground beef by the combined effect of sodium chloride and apple polyphenols. International Journal of Food Microbiology, 164(1), 54–59. doi: 10.1016/j.ijfoodmicro.2013.03.008.CrossRefGoogle Scholar
  25. Leistner, L. (1978). Hurdle effect and energy saving. In W. K. Downey (Ed.), Food quality and nutrition (pp. 553–557). London: Applied Science Publishers.Google Scholar
  26. Leistner, L., & Grahame, W. (2005). Update on hurdle technology approaches to food preservation. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in Food, Third Edition (3rd ed., pp. 621–641). CRC Press.Google Scholar
  27. Li, D., Liu, X., & Gao, Y. (2014). Synergistic Effects of sakacin C2 in combination with food preservatives. In T.-C. Zhang, P. Ouyang, S. Kaplan, & B. Skarnes (Eds.), Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012) (pp. 455–464). Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-642-37916-1_47.
  28. Metaxopoulos, J., Mataragas, M., & Drosinos, E. H. (2002). Microbial interaction in cooked cured meat products under vacuum or modified atmosphere at 4 degrees C. Journal of Applied Microbiology, 93(3), 363–373.Google Scholar
  29. Minahk, C. J., Saavedra, L., Sesma, F., & Morero, R. (2005). Membrane viscosity is a major modulating factor of the enterocin CRL35 activity. Biochimie, 87(2), 181–186. doi: 10.1016/j.biochi.2004.10.013.CrossRefGoogle Scholar
  30. Miranda, J. M., Vázquez, B. I., Fente, C. A., Calo-Mata, P., Cepeda, A., & Franco, C. M. (2008). Comparison of antimicrobial resistance in Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes strains isolated from organic and conventional poultry meat. Journal of Food Protection, 71(12), 2537–2542.Google Scholar
  31. Mitra, S., Mukhopadhyay, B. C., & Biswas, S. R. (2011). Potential application of the nisin Z preparation of Lactococcus lactis W8 in preservation of milk. Letters in Applied Microbiology, 53(1), 98–105. doi: 10.1111/j.1472-765X.2011.03075.x.CrossRefGoogle Scholar
  32. Morgan, S. M., Galvin, M., Kelly, J., Ross, R. P., & Hill, C. (1999). Development of a lacticin 3147-enriched whey powder with inhibitory activity against foodborne pathogens. Journal of Food Protection, 62(9), 1011–1016.Google Scholar
  33. Murdock, C. A., Cleveland, J., Matthews, K. R., & Chikindas, M. L. (2007). The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157:H7. Letters in Applied Microbiology, 44(3), 255–261. doi: 10.1111/j.1472-765X.2006.02076.x.CrossRefGoogle Scholar
  34. Nielsen, J. W., Dickson, J. S., & Crouse, J. D. (1990). Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Applied and Environmental Microbiology, 56(7), 2142–2145. Accessed 2 June 2014.Google Scholar
  35. Pomares, M. F., Salomón, R. A., Pavlova, O., Severinov, K., Farías, R., & Vincent, P. A. (2009). Potential applicability of chymotrypsin-susceptible microcin J25 derivatives to food preservation. Applied and Environmental Microbiology, 75(17), 5734–5738. doi: 10.1128/AEM. 01070-09.CrossRefGoogle Scholar
  36. Pucci, M. J., Vedamuthu, E. R., Kunka, B. S., & Vandenbergh, P. A. (1988). Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC 1.0. Applied and Environmental Microbiology, 54(10), 2349–2353.Google Scholar
  37. Ray, B., & Bhunia, A. (2007). Fundamental Food Microbiology, Fourth Edition (4th ed.). CRC Press.Google Scholar
  38. Rørvik, L. M. (2000). Listeria monocytogenes in the smoked salmon industry. International Journal of Food Microbiology, 62(3), 183–190.CrossRefGoogle Scholar
  39. Ryan, M. P., Rea, M. C., Hill, C., & Ross, R. P. (1996). An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Applied and Environmental Microbiology, 62(2), 612–619.Google Scholar
  40. Saavedra, L., Minahk, C., de Ruiz Holgado, A. P., & Sesma, F. (2004). Enhancement of the enterocin CRL35 activity by a synthetic peptide derived from the NH2-terminal sequence. Antimicrobial Agents and Chemotherapy, 48(7), 2778–2781. doi: 10.1128/AAC. 48.7.2778-2781.2004.CrossRefGoogle Scholar
  41. Saavedra, L., Bellomio, A., Hebert, E., Minahk, C. J., Suarez, N., & Sesma, F. (2012). Listeria: epidemiology, pathogenesis and novel potential treatments. In applications of natural products in food. Nueva York: Nova Science Publishers.Google Scholar
  42. Salomón, R. A., & Farías, R. N. (1992). Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. Journal of Bacteriology, 174(22), 7428–7435.Google Scholar
  43. Sánchez-Hidalgo, M., Montalbán-López, M., Cebrián, R., Valdivia, E., Martínez-Bueno, M., & Maqueda, M. (2011). AS-48 bacteriocin: close to perfection. Cellular and Molecular Life Sciences: CMLS, 68(17), 2845–2857. doi: 10.1007/s00018-011-0724-4.CrossRefGoogle Scholar
  44. Schillinger, U., Chung, H. S., Keppler, K., & Holzapfel, W. H. (1998). Use of bacteriocinogenic lactic acid bacteria to inhibit spontaneous nisin-resistant mutants of Listeria monocytogenes Scott A. Journal of Applied Microbiology, 85(4), 657–663.CrossRefGoogle Scholar
  45. Schmidt, S. E., Holub, G., Sturino, J. M., & Taylor, T. M. (2009). Suppression of Listeria monocytogenes Scott A in fluid milk by free and liposome-entrapped nisin. Probiotics and Antimicrobial Proteins, 1(2), 152–158. doi: 10.1007/s12602-009-9022-y.CrossRefGoogle Scholar
  46. Smigic, N., & Rajkovic, A. (2014). Hurdle technology. In V. R. Rai & J. A. Bai (Eds.), Microbial food safety and preservation techniques (1st ed.). Boca Raton: CRC Press.Google Scholar
  47. Sobrino-López, A., & Martín-Belloso, O. (2008). Use of nisin and other bacteriocins for preservation of dairy products. International Dairy Journal, 18(4), 329–343. doi: 10.1016/j.idairyj.2007.11.009.CrossRefGoogle Scholar
  48. Techathuvanan, C., Reyes, F., David, J. R. D., & Davidson, P. M. (2014). Efficacy of commercial natural antimicrobials alone and in combinations against pathogenic and spoilage microorganisms. Journal of Food Protection, 77(2), 269–275. doi: 10.4315/0362-028X.JFP-13-288.CrossRefGoogle Scholar
  49. Turner, M. (2011). Microbe outbreak panics Europe. Nature News, 474(7350), 137–137. doi: 10.1038/474137a.
  50. Uesugi, A. R., & Moraru, C. I. (2009). Reduction of Listeria on ready-to-eat sausages after exposure to a combination of pulsed light and nisin. Journal of Food Protection, 72(2), 347–353.Google Scholar
  51. Vignolo, G., Palacios, J., Farias, M. E., Sesma, F., Schillinger, U., Holzapfel, W., & Oliver, G. (2000). Combined effect of bacteriocins on the survival of various Listeria species in broth and meat system. Current Microbiology, 41(6), 410–416.CrossRefGoogle Scholar
  52. WHO. (2011). A Public Health Review of the enterohaemorrhagic Escherichia coli outbreak in Germany. http://www.euro.who.int/en/health-topics/disease-prevention/food-safety/publications/2011/a-public-health-review-of-the-enterohaemorrhagic-escherichia-coli-outbreak-in-germany. Accessed 25 Feb 2014.
  53. WHO/FAO. (n.d.). CODEX Alimentarius: Standards. http://www.codexalimentarius.org/standards/en/. Accessed 4 Apr 2014.
  54. Wulijideligen, N., Asahina, T., Hara, K., Arakawa, K., Nakano, H., & Miyamoto, T. (2012). Production of bacteriocin by Leuconostoc mesenteroides 406 isolated from Mongolian fermented mare’s milk, airag. Animal Science Journal, 83(10), 704–711. doi: 10.1111/j.1740-0929.2012.01010.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Leonardo Acuña
    • 1
  • Natalia S. Corbalan
    • 1
  • Inmaculada C. Fernandez-No
    • 2
  • Roberto D. Morero
    • 1
  • Jorge Barros-Velazquez
    • 2
  • Augusto Bellomio
    • 1
    Email author
  1. 1.Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNTSan Miguel de TucumánArgentina
  2. 2.Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary SciencesUniversity of Santiago de CompostelaLugoSpain

Personalised recommendations