Advertisement

Food and Bioprocess Technology

, Volume 8, Issue 4, pp 791–800 | Cite as

The Effect of High Power Ultrasound and Cold Gas-Phase Plasma Treatments on Selected Yeast in Pure Culture

  • Anet Režek Jambrak
  • Tomislava Vukušić
  • Višnja Stulić
  • Jasna Mrvčić
  • Slobodan Milošević
  • Marina Šimunek
  • Zoran HercegEmail author
Original Paper

Abstract

High power ultrasound (US) and cold gas-phase plasma (CP) are non-thermal processing technologies that maybe used in food processing industry. The main objective of this research was to study the effect of both treatments on selected yeasts (Rhodotorula spp. 74 and Candida spp. 86) in pure culture. Samples were treated by ultrasound with 57.50-, 86.25- or 115-μm amplitude, for 3, 6 or 9 min at 20 °C, and 40 or 60 °C in the case of thermosonication. For cold gas-phase plasma treatments, samples were treated at a gas flow of 0.75, 1 or 1.25 L min−1, treatment time of 3, 4 or 5 min, and sample volume of 2, 3 or 4 mL. Each technology has its own advantages and is able to give the best effect on the desired target product. The experiment was designed using central composite design (CCD), and results were analysed and presented using response surface methodology (RSM). The greatest reduction of yeasts was observed after ultrasound treatments at 60 °C (thermosonication) and after plasma treatments, after the longest treatment time (5 min) and the lowest sample volume (2 mL). For high power ultrasound treatment, reduction in the number of yeast cells (N) can be attributed to elevated temperature (60 °C), cavitation and free radical formation. For plasma treatment, the inactivation can be attributed to UV radiation and plasma reactive oxygen species (ROS).

Keywords

High power ultrasound Cold gas-phase plasma Yeast Response surface methodology Radicals 

Notes

Acknowledgments

This work has been supported in part by the Croatian Science Foundation under the project IP-11-2013-6248 “Application of electrical discharge plasma for preservation of liquid foods.”

References

  1. Ashokkumar, M., & Kentish, S. (2011). The physical and chemical effects of ultrasound. In H. Feng, G. Barobosa-Cànovas, & J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing (pp. 1–105). New York: Springer.Google Scholar
  2. Bermudez-Aguirre, D., Mobbs, T., & Barbosa-Canovas, G. V. (2011). Ultrasound applications in food processing. In H. Feng, G. V. Barbosa-Canovas, & J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing (pp. 65–105). USA: Springer.CrossRefGoogle Scholar
  3. Chemat, F., Zill-e-Huma, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonic Sonochemistry, 18, 813–835.CrossRefGoogle Scholar
  4. Herceg, Z., Režek Jambrak, A., Lelas, V., & Mededovic Thagard, S. (2012). The effect of high intensity ultrasound treatment on the amount of Staphylococcus aureus and Escherichia coli in milk. Food Technology and Biotechnology, 50, 46–52.Google Scholar
  5. Herceg, Z., Markov, K., Sobota Šalamon, B., Režek Jambrak, A., & Vukušić, T. (2013). Effect of high intensity ultrasound treatment on growth of food spoilage bacteria. Food Technology and Biotechnology, 51(3), 352–359.Google Scholar
  6. Hoffmann, M. R., Hua, I., & Höchemer, I. H. R. (1996). Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrasonics Sonochemistry, 3, 163–172.CrossRefGoogle Scholar
  7. Jambrak Režek, A., Mason, T. J., Lelas, V., Herceg, Z., & Ljubić Herceg, I. (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering, 86(2), 281–287.CrossRefGoogle Scholar
  8. Jambrak Režek, A., Lelas, V., Mason, T. J., Krešić, G., & Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93, 386–393.CrossRefGoogle Scholar
  9. Kamgang-Youbi, G., Herry, J. M., Meylheuc, T., Brisset, J. L., Bellon-Fontaine, M. N., et al. (2009). Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Letters in Applied Microbiology, 48, 13–18.CrossRefGoogle Scholar
  10. Khuri, A. I., & Cornell, J. A. (1996). Response surfaces: design and analyses (2nd ed.). New York: Marcel Dekker.Google Scholar
  11. Kregar, Z., Bišćan, M., Milošević, S., & Vesel, A. (2011). Monitoring oxygen plasma treatment of polypropylene with optical emission spectroscopy. IEEE Transactions on Plasma Science, 39(5), 1239–1246.CrossRefGoogle Scholar
  12. Laroussi, M. (2005). Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Processes and Polymers, 2, 391–400.CrossRefGoogle Scholar
  13. Lee, K., Paek, K. H., Ju, W. T., & Lee, Y. (2006). Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. Journal of Microbiology, 44, 269–275.Google Scholar
  14. Lee, H., Zhou, B., Liang, W., Feng, H., & Martin, S. E. (2009). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modelling. Journal of Food Engineering, 93, 354–364.CrossRefGoogle Scholar
  15. Lu, C. H., Engelmann, N. J., Lila, M. A., & Erdman, J. W., Jr. (2008). Optimization of lycopene extraction from tomato cell suspension culture by response surface methodology. Journal of Agriculture and Food Chemistry, 56, 7710–7714.CrossRefGoogle Scholar
  16. Mason, T. J. (1998). Power ultrasound in food processing—the way forward. In M. J. W. Povey & T. J. Mason (Eds.), Ultrasound in food processing (pp. 103–126). London: Blackie Academic & Professional.Google Scholar
  17. Mason, T. J. (2003). Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrasonic Sonochemistry, 10, 175–179.CrossRefGoogle Scholar
  18. Mitra, A., Li, Y. F., Klämpfl, T. G., Shimizu, T., Jeon, J., Morfill, G. E., & Zimmermann, J. L. (2014). Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food and Bioprocess Technology, 7, 645–653.CrossRefGoogle Scholar
  19. Muranyi, P., Wunderlich, J., & Heise, M. (2007). Sterilization efficiency of a cascaded dielectric barrier discharge. Journal of Applied Microbiology, 103, 1535–1544.CrossRefGoogle Scholar
  20. Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiments (2nd ed.). USA: John Wiley & Sons.Google Scholar
  21. Peña-Eguiluz, R., Pérez-Martínez, J. A., Solís-Pacheco, J., Aguilar-Uscanga, B., López Callejas, R., Mercado-Cabrera, A., et al. (2010). Instrumentation for a plasma needle applied to E. coli bacteria elimination. The European Physical Journal Applied Physics, 49, 103–109.CrossRefGoogle Scholar
  22. Piyasena, P., Mohareb, E., & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology, 87, 207–216.CrossRefGoogle Scholar
  23. Raso, J., Pagan, R., Condon, S., & Sala, F. J. (1998). Influence of temperature on the lethality of ultrasound. Applied Environmental Microbiology, 64, 465–471.Google Scholar
  24. Roth, J. R., Fellow, L., Nourgostar, S., Member, S., Bonds, T. A., & Member, S. (2007). Plasma (OAUGDP)—a platform technology for the 21st century. IEEE Transactions on Plasma Science, 35, 233–250.CrossRefGoogle Scholar
  25. Ryu, Y.-H., Kim, Y.-H., Lee, J.-Y., Shim, G.-B., Uhm, H.-S., et al. (2013). Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. Public Library of Science (PLOS). PLoS ONE, 8(6), e66231. doi: 10.1371/journal.pone.0066231.CrossRefGoogle Scholar
  26. Salleh-Mack, S. Z., & Roberts, J. S. (2007). Ultrasound pasteurization: the effects of temperature soluble solids organic acids and pH on the inactivation of Escherichia coli ATCC 25922. Ultrasonic Sonochemistry, 14, 323–329.CrossRefGoogle Scholar
  27. Sun, Y., Yu, S., Sun, P., Wu, H., Zhu, W., et al. (2012). Inactivation of Candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs. Public Library of Science (PLOS). PLoS ONE, 7(7), e40629. doi: 10.1371/journal.pone.0040629.CrossRefGoogle Scholar
  28. Šimunek, M., Jambrak Režek, A., Petrović, M., Juretić, H., Major, N., Herceg, Z., Hruškar, M., & Vukušić, T. (2013). Aroma profile and sensory properties of ultrasound-treated apple juice and nectar. Food Technology and Biotechnology, 51(1), 101–111.Google Scholar
  29. Tang, Y. Z., Lu, X. P., Laroussi, M., & Dobbs, F. C. (2008). Sublethal and killing effects of atmospheric-pressure, nonthermal plasma on eukaryotic microalgae in aqueous media. Plasma Processes and Polymers, 5, 552–558.CrossRefGoogle Scholar
  30. Vleugels, M., Shama, G., Deng, X. T., Greenacre, E., Brocklehurst, T., & Kong, M. G. (2005). Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Transactions on Plasma Science, 33, 824.CrossRefGoogle Scholar
  31. Xiong, Z., Lu, X. P., Feng, A., Pan, Y., & Ostrikov, K. (2010). Highly effective fungal inactivation in He + O2 atmospheric-pressure nonequilibrium plasmas. Physics of Plasmas, 17, 123502.CrossRefGoogle Scholar
  32. Zaplotnik, R., Kregar, Z., Bišćan, M., Vesel, A., Cvelbar, U., Mozetič, M., & Milošević, S. (2014). Multiple vs. single harmonics AC-driven atmospheric plasma jet. EPL, 106, 25001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Anet Režek Jambrak
    • 1
  • Tomislava Vukušić
    • 1
  • Višnja Stulić
    • 1
  • Jasna Mrvčić
    • 1
  • Slobodan Milošević
    • 2
  • Marina Šimunek
    • 1
  • Zoran Herceg
    • 1
    Email author
  1. 1.Faculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Institute of PhysicsZagrebCroatia

Personalised recommendations