Advertisement

Food and Bioprocess Technology

, Volume 8, Issue 2, pp 343–358 | Cite as

Kinetics of Food Quality Changes During Thermal Processing: a Review

  • B. Ling
  • J. Tang
  • F. Kong
  • E. J. Mitcham
  • S. Wang
Original Paper

Abstract

Thermal treatments are extensively used in the food industry for control of pathogenic and spoilage microorganisms and spoilage enzymes. Food quality degradation during those treatments can be a major concern for consumer acceptance. Kinetic studies and mathematical models on quality changes of foods are essential in proper design of thermal treatments to ensure consumer satisfaction. This study provides a comprehensive review of recent progresses on quality kinetics for thermal treatments to inactivate microorganisms and enzymes in foods of both plant and animal origins. This paper mainly covers the theoretical basis for studying quality kinetics, common and special kinetic models to describe major quality attributes, such as appearance, texture, and nutrients, and potential applications of quality kinetic models to developing thermal treatment protocols. Finally, this review describes the challenges in quality kinetic studies and proposes recommendations for future research to maintain food quality and extend shelf life.

Keywords

Thermal processing Color Texture Nutrients Kinetic model 

Notes

Acknowledgments

This research was supported by grants from Ph.D. Programs Foundation of Ministry of Education of China (20120204110022) and the general program of the National Natural Science Foundation of China (No. 31371853).

References

  1. Adams, J. (1991). Review: enzyme inactivation during heat processing of food-stuffs. International Journal of Food Science & Technology, 26(1), 1–20.CrossRefGoogle Scholar
  2. Ahmed, J., Shivhare, U. S., & Ramaswamy, H. S. (2002). A fraction conversion kinetic model for thermal degradation of color in red chilli puree and paste. LWT—Food Science and Technology, 35(6), 497–503.Google Scholar
  3. Anthon, G. E., & Barrett, D. M. (2002). Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. Journal of Agricultural and Food Chemistry, 50(14), 4119–4125.CrossRefGoogle Scholar
  4. Avila, I., & Silva, C. L. M. (1999). Modelling kinetics of thermal degradation of colour in peach puree. Journal of Food Engineering, 39(2), 161–166.CrossRefGoogle Scholar
  5. Awuah, G., Ramaswamy, H., & Economides, A. (2007). Thermal processing and quality: principles and overview. Chemical Engineering and Processing: Process Intensification, 46(6), 584–602.CrossRefGoogle Scholar
  6. Barreiro, J. A., Milano, M., & Sandoval, A. J. (1997). Kinetics of colour change of double concentrated tomato paste during thermal treatment. Journal of Food Engineering, 33(3–4), 359–371.CrossRefGoogle Scholar
  7. Barsa, C. S., Normand, M. D., & Peleg, M. (2012). On models of the temperature effect on the rate of chemical reactions and biological processes in foods. Food Engineering Reviews, 4(4), 191–202.CrossRefGoogle Scholar
  8. Beck, J.V. & Arnold, K.J. (1977). Parameter estimation in engineering and science. New York: John Wiley & Sons, 495pp.Google Scholar
  9. Bermudez-Aguirre, D., & Corradini, M. G. (2012). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: a review. Food Research International, 45(2), 700–712.CrossRefGoogle Scholar
  10. Bourne, M. (2002). Food texture and viscosity: concept and measurement. Elsevier Science.Google Scholar
  11. Breda, C. A., Sanjinez-Argandoña, E. J., & Correia, C. A. C. (2012). Shelf life of powdered Campomanesia adamantium pulp in controlled environments. Food Chemistry, 135(4), 2960–2964.CrossRefGoogle Scholar
  12. Brookmire, L., Mallikarjunan, P., Jahncke, M., & Grisso, R. (2013). Optimum cooking conditions for shrimp and Atlantic salmon. Journal of Food Science, 78(2), S303–S313.CrossRefGoogle Scholar
  13. Buransompob, A., Tang, J., Mao, R., & Swanson, B. G. (2003). Rancidity of walnuts and almonds affected by short time heat treatments for insect control. Journal of Food Processing and Preservation, 27(6), 445–464.CrossRefGoogle Scholar
  14. Chen, L., & Opara, U. L. (2013). Texture measurement approaches in fresh and processed foods—a review. Food Research International, 51(2), 823–835.CrossRefGoogle Scholar
  15. Chung, H., Wang, S., & Tang, J. (2007). Influence of heat transfer in test tubes on measured thermal inactivation parameters for Escherichia coli. Journal of Food Protection, 70(4), 851–859.Google Scholar
  16. Chung, H. J., Birla, S., & Tang, J. (2008). Performance evaluation of aluminum test cell designed for determining the heat resistance of bacterial spores in foods. LWT—Food Science and Technology, 41(8), 1351–1359.Google Scholar
  17. Chutintrasri, B., & Noomhorm, A. (2007). Color degradation kinetics of pineapple puree during thermal processing. LWT—Food Science and Technology, 40(2), 300–306.Google Scholar
  18. Corradini, M. G., & Peleg, M. (2004). A model of non-isothermal degradation of nutrients, pigments and enzymes. Journal of the Science of Food and Agriculture, 84(3), 217–226.CrossRefGoogle Scholar
  19. Corradini, M. G., & Peleg, M. (2006). Prediction of vitamins loss during non-isothermal heat processes and storage with non-linear kinetic models. Trends in Food Science & Technology, 17(1), 24–34.CrossRefGoogle Scholar
  20. Czerwonka, M., Szterk, A., & Waszkiewicz-Robak, B. (2014). Vitamin B12 content in raw and cooked beef. Meat Science, 96(3), 1371–1375.CrossRefGoogle Scholar
  21. De Roeck, A., Mols, J., Duvetter, T., Van Loey, A., & Hendrickx, M. (2010). Carrot texture degradation kinetics and pectin changes during thermal versus high-pressure/high-temperature processing: a comparative study. Food Chemistry, 120(4), 1104–1112.CrossRefGoogle Scholar
  22. Dhuique-Mayer, C., Tbatou, M., Carail, M., Caris-Veyrat, C., Dornier, M., & Amiot, M. J. (2007). Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds. Journal of Agricultural and Food Chemistry, 55(10), 4209–4216.CrossRefGoogle Scholar
  23. Dolan, K. D. (2003). Estimation of kinetic parameters for nonisothermal food processes. Journal of Food Science, 68(3), 728–741.CrossRefGoogle Scholar
  24. Earle, R. L., & Earle, M. D. (2003). Fundamentals of food reaction technology. Surrey: Leatherhead Food International Limited. 187pp.Google Scholar
  25. Fante, L., & Noreña, C. P. Z. (2012). Enzyme inactivation kinetics and colour changes in Garlic (Allium sativum L.) blanched under different conditions. Journal of Food Engineering, 108(3), 436–443.CrossRefGoogle Scholar
  26. FDA (2000). Kinetics of microbial inactivation for alternative food processing technologies. http://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm100158.htm. Last accessed on May 2, 2014.
  27. Fellows, P.J. (2009). Food processing technology: principles and practice, Third Edition. Boca Raton: CRC Press, 895pp.Google Scholar
  28. Fernandez-Lopez, J. A., Angosto, J. M., Gimenez, P. J., & Leon, G. (2013). Thermal stability of selected natural red extracts used as food colorants. Plant Foods for Human Nutrition, 68(1), 11–17.CrossRefGoogle Scholar
  29. Fu, B., & Labuza, T. P. (1993). Shelf-life prediction: theory and application. Food Control, 4(3), 125–133.CrossRefGoogle Scholar
  30. Fujikawa, H., & Itoh, T. (1998). Thermal inactivation analysis of mesophiles using the Arrhenius and z-value models. Journal of Food Protection, 61(7), 910–912.Google Scholar
  31. Ganjloo, A., Rahman, R. A., Osman, A., Bakar, J., & Bimakr, M. (2011). Kinetics of crude peroxidase inactivation and color changes of thermally treated seedless guava (Psidium guajava L.). Food and Bioprocess Technology, 4(8), 1442–1449.CrossRefGoogle Scholar
  32. Gao, M., Tang, J., Wang, Y., Powers, J., & Wang, S. (2010). Almond quality as influenced by radio frequency heat treatments for disinfestation. Postharvest Biology and Technology, 58(3), 225–231.CrossRefGoogle Scholar
  33. Goncalves, E. M., Pinheiro, J., Abreu, M., Brandao, T. R. S., & Silva, C. L. M. (2007). Modelling the kinetics of peroxidase inactivation, colour and texture changes of pumpkin (Cucurbita maxima L.) during blanching. Journal of Food Engineering, 81(4), 693–701.CrossRefGoogle Scholar
  34. Gondo, S., Sato, R., & Kusunoki, K. (1972). Iterative method of correcting the effect of temperature changes on evaluating the rate constant of the first order chemical reaction. Chemical Engineering Science, 27, 1609–1611.CrossRefGoogle Scholar
  35. Goñi, S. M., & Salvadori, V. O. (2011). Kinetic modelling of colour changes during beef roasting. Procedia Food Science, 1, 1039–1044.CrossRefGoogle Scholar
  36. Hadjal, T., Dhuique-Mayer, C., Madani, K., Dornier, M., & Achir, N. (2013). Thermal degradation kinetics of xanthophylls from blood orange in model and real food systems. Food Chemistry, 138(4), 2442–2450.CrossRefGoogle Scholar
  37. Haefner, J.W. (2005). Modeling biological systems: principles and applications. New York: Springer, 463pp.Google Scholar
  38. Hansen, J. D., Wang, S., & Tang, J. (2004). A cumulated lethal time model to evaluate efficacy of heat treatments for codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae) in cherries. Postharvest Biology and Technology, 33(3), 309–317.CrossRefGoogle Scholar
  39. Harbourne, N., Jacquier, J. C., Morgan, D. J., & Lyng, J. G. (2008). Determination of the degradation kinetics of anthocyanins in a model juice system using isothermal and non-isothermal methods. Food Chemistry, 111(1), 204–208.CrossRefGoogle Scholar
  40. Hill, C.G. (1977). An introduction to chemical engineering kinetics & reactor design. New York: John Wiley & Sons, 584pp.Google Scholar
  41. Hindra, F., & Baik, O. D. (2006). Kinetics of quality changes during food frying. Critical Reviews in Food Science and Nutrition, 46(3), 239–258.CrossRefGoogle Scholar
  42. Hiwilepo-van Hal, P., Bosschaart, C., van Twisk, C., Verkerk, R., & Dekker, M. (2012). Kinetics of thermal degradation of vitamin C in marula fruit (Sclerocarya birrea subsp. caffra) as compared to other selected tropical fruits. LWT--Food Science and Technology, 49(2), 188–191.CrossRefGoogle Scholar
  43. Holdsworth, D. & Simpson, R. (2008). Thermal processing of packaged foods. London: Blackie Academic and Professional, 427 pp.Google Scholar
  44. IFT (2003). Kinetic models for microbial survival during processing. http://www.ift.org/Knowledge-Center/Read-IFT-Publications/Science-Reports/Research-Summits/Kinetic-Models.aspx. Last accessed on June 20, 2014.
  45. Jaiswal, A. K., Gupta, S., & Abu-Ghannam, N. (2012). Kinetic evaluation of colour, texture, polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment. Food Chemistry, 131(1), 63–72.CrossRefGoogle Scholar
  46. Jimenez, N., Bohuon, P., Lima, J., Dornier, M., Vaillant, F., & Perez, M. (2010). Kinetics of anthocyanin degradation and browning in reconstituted blackberry juice treated at high temperatures (100–180 degrees C). Journal of Agricultural and Food Chemistry, 58(4), 2314–2322.CrossRefGoogle Scholar
  47. Jin, T., Zhang, H., Boyd, G., & Tang, J. M. (2008). Thermal resistance of Salmonella enteritidis and Escherichia coli K12 in liquid egg determined by thermal-death-time disks. Journal of Food Engineering, 84(4), 608–614.CrossRefGoogle Scholar
  48. Jonsson, U., Snygg, B. G., HäNulv, B. G., & Zachrisson, T. (1977). Testing two models for the temperature dependence of the heat inactivation rate of Bacillus stearothermophilus spores. Journal of Food Science, 42(5), 1251–1252.CrossRefGoogle Scholar
  49. Kechinski, C. P., Guimaraes, P. V. R., Norena, C. P. Z., Tessaro, I. C., & Marczak, L. D. F. (2010). Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. Journal of Food Science, 75(2), C173–C176.CrossRefGoogle Scholar
  50. Knights, M. (2013). Microwave sterilization for packaged meals. Food Engineering, 10, 159–160.Google Scholar
  51. Ko, W. C., Liu, W. C., Tsang, Y. T., & Hsieh, C. W. (2007). Kinetics of winter mushrooms (Flammulina velutipes) microstructure and quality changes during thermal processing. Journal of Food Engineering, 81(3), 587–598.CrossRefGoogle Scholar
  52. Kong, F. B., Tang, J. M., Rasco, B., & Crapo, C. (2007). Kinetics of salmon quality changes during thermal processing. Journal of Food Engineering, 83(4), 510–520.CrossRefGoogle Scholar
  53. Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT - Food Science and Technology, 41, 1210–1222.CrossRefGoogle Scholar
  54. Labuza, T. P. (1984). Application of chemical kinetics to deterioration of foods. Journal of Chemical Education, 61(4), 348.CrossRefGoogle Scholar
  55. Lau, M. H., Tang, J., & Swanson, B. G. (2000). Kinetics of textural and color changes in green asparagus during thermal treatments. Journal of Food Engineering, 45(4), 231–236.CrossRefGoogle Scholar
  56. Lemmens, L., Colle, I. J. P., Van Buggenhout, S., Van Loey, A. M., & Hendrickx, M. E. (2011). Quantifying the influence of thermal process parameters on in vitro beta-carotene bioaccessibility: a case study on carrots. Journal of Agricultural and Food Chemistry, 59(7), 3162–3167.CrossRefGoogle Scholar
  57. Levenspiel, O. (1999). Chemical reaction engineering. New York: John Wiley & Sons, 665pp.Google Scholar
  58. Liaotrakoon, W., Clercq, N., Hoed, V., Walle, D., Lewille, B., & Dewettinck, K. (2013). Impact of thermal teatment on physicochemical, antioxidative and rheological properties of white-flesh and red-flesh dragon fruit (Hylocereus spp.) purees. Food and Bioprocess Technology, 6(2), 416–430.CrossRefGoogle Scholar
  59. Liing, A. C., & Lund, D. B. (1978). Determining kinetic parameters for thermal inactivation of heat resistant and heat-labile isozymes from thermal destruction curves. Journal of Food Science, 43(4), 1307–1310.CrossRefGoogle Scholar
  60. Lima, J. R., Elizondo, N. J., & Bohuon, P. (2010). Kinetics of ascorbic acid degradation and colour change in ground cashew apples treated at high temperatures (100–180°C). International Journal of Food Science & Technology, 45(8), 1724–1731.CrossRefGoogle Scholar
  61. Liu, Y., Tang, J., Mao, Z., Mah, J.-H., Jiao, S., & Wang, S. (2011). Quality and mold control of enriched white bread by combined radio frequency and hot air treatment. Journal of Food Engineering, 104(4), 492–498.CrossRefGoogle Scholar
  62. Lund, D. B. (1977). Design of thermal processes for minimizing nutrient retention. Food Technology, 71–78.Google Scholar
  63. Marra, F., Zhang, L., & Lyng, J. G. (2009). Radio frequency treatment of foods: review of recent advances. Journal of Food Engineering, 91(4), 497–508.CrossRefGoogle Scholar
  64. Nayak, B., Berrios, J. D. J., Powers, J. R., & Tang, J. M. (2011). Thermal degradation of anthocyanins from purple potato (cv. Purple Majesty) and impact on antioxidant capacity. Journal of Agricultural and Food Chemistry, 59(20), 11040–11049.CrossRefGoogle Scholar
  65. Nelson, P.E. (2010). Principles of aseptic processing and packaging. Purdue University Press.Google Scholar
  66. Nguyen, M. T., Indrawati, & Hendrickx, M. (2003). Model studies on the stability of folic acid and 5-methyltetrahydrofolic acid degradation during thermal treatment in combination with high hydrostatic pressure. Journal of Agricultural and Food Chemistry, 51(11), 3352–3357.CrossRefGoogle Scholar
  67. Nisha, P., Singhal, R. S., & Pandit, A. B. (2006). Kinetic modelling of texture development in potato cubes (Solanum tuberosum L.), green gram whole (Vigna radiate L.) and red gram splits (Cajanus cajan L.). Journal of Food Engineering, 76(4), 524–530.CrossRefGoogle Scholar
  68. Nisha, P., Singhal, R., & Pandit, A. (2011). Kinetic modelling of colour degradation in tomato puree (Lycopersicon esculentum L.). Food and Bioprocess Technology, 4(5), 781–787.CrossRefGoogle Scholar
  69. Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., Elez-Martínez, P., & Martín-Belloso, O. (2012). Stability of health-related compounds in plant foods through the application of non thermal processes. Trends in Food Science & Technology, 23(2), 111–123.CrossRefGoogle Scholar
  70. Ovissipour, M., Rasco, B., Tang, J., & Sablani, S. S. (2013). Kinetics of quality changes in whole blue mussel (Mytilus edulis) during pasteurization. Food Research International, 53(1), 141–148.CrossRefGoogle Scholar
  71. Pathare, P. B., Opara, U. L., & Al-Said, F. A. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.CrossRefGoogle Scholar
  72. Peleg, M., & Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science, 38(5), 353–380.CrossRefGoogle Scholar
  73. Peleg, M., Normand, M. D., & Corradini, M. G. (2012). The Arrhenius equation revisited. Critical Reviews in Food Science and Nutrition, 52(9), 830–851.CrossRefGoogle Scholar
  74. Peng, J., Tang, J., Barrett, D. M., Sablani, S. S., & Powers, J. R. (2014). Kinetics of carrot texture degradation under pasteurization conditions. Journal of Food Engineering, 122, 84–91.CrossRefGoogle Scholar
  75. Pereira, R., Martins, R., & Vicente, A. (2008). Goat milk free fatty acid characterization during conventional and ohmic heating pasteurization. Journal of Dairy Science, 91(8), 2925–2937.CrossRefGoogle Scholar
  76. Ramaswamy, H., Fvd, V., & Ghazala, S. (1989). An analysis of TDT and Arrhenius methods for handling process and kinetic data. Journal of Food Science, 54(5), 1322–1326.CrossRefGoogle Scholar
  77. Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Research International, 44(7), 1875–1887.CrossRefGoogle Scholar
  78. Riva, M., & Torri, L. (2009). Pineapple shelf life evaluation using an electronic nose. Italian Journal of Food Science, 21, 242–246.Google Scholar
  79. Rizvi, A. F., & Tong, C. H. (1997). Fractional conversion for determining texture degradation kinetics of vegetables. Journal of Food Science, 62(1), 1–7.CrossRefGoogle Scholar
  80. Rudra, S. G., Sarkar, B. C., & Shivhare, U. S. (2008). Thermal degradation kinetics of chlorophyll in pureed coriander leaves. Food and Bioprocess Technology, 1(1), 91–99.CrossRefGoogle Scholar
  81. Saguy, I., Kopelman, I. J., & Mizrahi, S. (1978). Simulation of ascorbic acid stability during heat processing and concentration of grapefruit juice. Journal of Food Process Engineering, 2(3), 213–225.CrossRefGoogle Scholar
  82. Simpson, R. (2010). Engineering aspects of thermal food processing. Boca Raton: CRC Press, 522 pp.Google Scholar
  83. Skrede, G. (1985). Color quality of blackcurrant syrups during storage evaluated by hunter L', a', b'values. Journal of Food Science, 50(2), 514–517.CrossRefGoogle Scholar
  84. Song, J. Y., An, G. H., & Kim, C. J. (2003). Color, texture, nutrient contents, and sensory values of vegetable soybeans [Glycine max (L.) Merrill] as affected by blanching. Food Chemistry, 83(1), 69–74.CrossRefGoogle Scholar
  85. Steinfeld, J.I., Francisco, J.S. & Hase, W.L. (1998). Chemical kinetics and dynamics. Upper Saddle River: Prentice Hall, 560pp.Google Scholar
  86. Stoforos, N. G. (1995). Thermal process design. Food Control, 6(2), 81–94.CrossRefGoogle Scholar
  87. Stumbo, C.R. (1973) Thermobacteriology in food processing. New York: Academic Press, 327pp.Google Scholar
  88. Suh, H. J., Noh, D. O., Kang, C. S., Kim, J. M., & Lee, S. W. (2003). Thermal kinetics of color degradation of mulberry fruit extract. Food / Nahrung, 47(2), 132–135.CrossRefGoogle Scholar
  89. Sungpuag, P., Tangchitpianvit, S., Chittchang, U., & Wasantwisut, E. (1999). Retinol and beta carotene content of indigenous raw and home-prepared foods in Northeast Thailand. Food Chemistry, 64(2), 163–167.CrossRefGoogle Scholar
  90. Swinbourne, E.S. (1971) Analysis of kinetic data. London: Nelson, 125pp.Google Scholar
  91. Tang, J., Feng, H., & Lau, M. (2002). Microwave heating in food processing. In X. Young & J. Tang (Eds.), Advances in bioprocessing engineering (pp. 1–43). New Jersey: World Scientific Publisher.CrossRefGoogle Scholar
  92. Tang, Z., Mikhaylenko, G., Liu, F., Mah, J. H., Tang, J., Pandit, R., & Younce, F. (2008). Microwave sterilization of sliced beef in gravy in 7-Oz trays. Journal of Food Engineering, 89(4), 375–383.CrossRefGoogle Scholar
  93. Theodore, L., Saguy, I.S. & Petros, T. (1997). Kinetics of food deterioration and shelf-life prediction. In: Handbook of food engineering practice. New York: CRC Press.Google Scholar
  94. Van Boekel, M. A. J. S. (1996). Statistical aspects of kinetic modeling for food science problems. Journal of Food Science, 61(3), 477–486.CrossRefGoogle Scholar
  95. Van Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1–2), 139–159.CrossRefGoogle Scholar
  96. Van Boekel, M. A. J. S. (2008). Kinetic modeling of food quality: a critical review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 144–158.CrossRefGoogle Scholar
  97. Van Loey, A., Fransis, A., Hendrickx, M., Maesmans, G., & Tobback, P. (1995). Kinetics of quality changes of green peas and white beans during thermal processing. Journal of Food Engineering, 24(3), 361–377.CrossRefGoogle Scholar
  98. Verbeyst, L., Oey, I., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123(2), 269–274.CrossRefGoogle Scholar
  99. Verbeyst, L., Van Crombruggen, K., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2011). Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. Journal of Food Engineering, 105(3), 513–521.CrossRefGoogle Scholar
  100. Vieira, M. C., Teixeira, A. A., & Silva, C. L. M. (2000). Mathematical modeling of the thermal degradation kinetics of vitamin C in cupuaçu (Theobroma grandiflorum) nectar. Journal of Food Engineering, 43(1), 1–7.CrossRefGoogle Scholar
  101. Vikram, V. B., Ramesh, M. N., & Prapulla, S. G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31–40.CrossRefGoogle Scholar
  102. Vu, T. S., Smout, C., Sila, D. N., LyNguyen, B., Van Loey, A. M. L., & Hendrickx, M. E. G. (2004). Effect of preheating on thermal degradation kinetics of carrot texture. Innovative Food Science & Emerging Technologies, 5(1), 37–44.CrossRefGoogle Scholar
  103. Wang, Y., Wig, T., Tang, J., & Hallberg, L. (2003). Sterilization of foodstuffs using radio frequency heating. Journal of Food Science, 68(2), 539–544.CrossRefGoogle Scholar
  104. Wang, S., Tang, J., Sun, T., Mitcham, E. J., Koral, T., & Birla, S. L. (2006). Considerations in design of commercial radio frequency treatments for postharvest pest control in in-shell walnuts. Journal of Food Engineering, 77(2), 304–312.CrossRefGoogle Scholar
  105. Wang, J., Luechapattanaporn, K., Wang, Y., & Tang, J. (2012). Radio-frequency heating of heterogeneous food—meat lasagna. Journal of Food Engineering, 108(1), 183–193.CrossRefGoogle Scholar
  106. Wedzicha, B. L., Goddard, S. J., & Zeb, A. (1993). Approach to the design of model systems for food additive-food component interactions. Food Chemistry, 47(2), 129–132.CrossRefGoogle Scholar
  107. Wen, T. N., Prasad, K. N., Yang, B., & Ismail, A. (2010). Bioactive substance contents and antioxidant capacity of raw and blanched vegetables. Innovative Food Science & Emerging Technologies, 11(3), 464–469.CrossRefGoogle Scholar
  108. Wu, D., & Sun, D.-W. (2013). Colour measurements by computer vision for food quality control—a review. Trends in Food Science & Technology, 29(1), 5–20.CrossRefGoogle Scholar
  109. Yoon, Y., Cho, W. J., Park, J. G., Park, J. N., Song, B. S., Kim, J. H., Byun, M. W., Kim, C. J., Sharma, A. K., & Lee, J. W. (2009). Effect of gamma irradiation on shelf-life extension and sensory characteristics of Dak-galbi (marinated diced chicken) during accelerated storage. Korean Journal for Food Science of Animal Resource, 29(5), 573–578.CrossRefGoogle Scholar
  110. Yu, K., Wu, Y., Hu, Z., Cui, S., & Yu, X. (2011). Modeling thermal degradation of litchi texture: comparison of WeLL model and conventional methods. Food Research International, 44(7), 1970–1976.CrossRefGoogle Scholar
  111. Zabbia, A., Buys, E. M., & De Kock, H. L. (2011). Undesirable sulphur and carbonyl flavor compounds in UHT milk: a review. Critical Reviews in Food Science and Nutrition, 52(1), 21–30.CrossRefGoogle Scholar
  112. Zanoni, B., Pagliarini, E., Giovanelli, G., & Lavelli, V. (2003). Modelling the effects of thermal sterilization on the quality of tomato puree. Journal of Food Engineering, 56(2–3), 203–206.CrossRefGoogle Scholar
  113. Zhang, L., Lyng, J. G., & Brunton, N. P. (2004). Effect of radio frequency cooking on the texture, colour and sensory properties of a large diameter comminuted meat product. Meat Science, 68(2), 257–268.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • B. Ling
    • 1
  • J. Tang
    • 2
  • F. Kong
    • 3
  • E. J. Mitcham
    • 4
  • S. Wang
    • 1
    • 2
  1. 1.College of Mechanical and Electronic EngineeringNorthwest A&F UniversityYanglingChina
  2. 2.Department of Biological Systems EngineeringWashington State UniversityPullmanUSA
  3. 3.Department of Food Science & TechnologyUniversity of GeorgiaAthensUSA
  4. 4.Department of Plant Sciences, Mail Stop 2University of CaliforniaDavisUSA

Personalised recommendations