Advertisement

Food and Bioprocess Technology

, Volume 7, Issue 12, pp 3629–3645 | Cite as

Effect of pH on Enzyme Inactivation Kinetics in High-Pressure Processed Pineapple (Ananas comosus L.) Puree Using Response Surface Methodology

  • Snehasis Chakraborty
  • P. Srinivasa Rao
  • H. N. Mishra
Original Paper

Abstract

Effect of pH and high-pressure process treatments viz. pressure, temperature, and dwell time on inactivation of polyphenoloxidase (PPO), peroxidase (POD), bromelain (BRM), and pectinmethylesterase (PME) in pineapple puree was studied. Experiments were conducted according to rotatable central composite design (RCCD) within the range (−α to + α) of 100–600 MPa, 20–70 °C, and 0–30 min at three different pH levels (3.0, 3.5, and 4.0) followed by analysis through response surface methodology (RSM). Enzyme inactivation was significantly (p < 0.05) affected by all the process parameters, and temperature had the highest contribution among those. Enzyme inactivation kinetics was demonstrated with dynamic pressure-buildup period (pressure pulse effect) followed by static pressure-hold period (isobaric-isothermal first-order inactivation). Increased pulse effect (PE in log scale) values were obtained at lower pH and higher values of both pressure and temperature. Maximum PE values, obtained at 500 MPa/60 °C/pH 3, were 0.332, 0.319, 0.392, and 0.278 for PPO, POD, PME, and BRM, respectively. The inactivation rate (k in min−1) revealed that PPO was the most resistive (k ranged between 0.0020 and 0.0379 min−1) when compared with other three enzymes within the experimental domain. Increased k at lower pH with constant pressure and temperature depicted that pH had negative effect on the inactivation process. The optimized conditions targeting maximum inactivation of PPO, POD and PME with simultaneous retention of BRM in pineapple puree, were 600 MPa/60 °C/9 min, 600 MPa/60 °C/10 min and 600 MPa/60 °C/10 min for the samples of pH 3.0, 3.5, and 4.0, respectively.

Keywords

Bromelain High pressure Inactivation kinetics Pectinmethylesterase Peroxidase Polyphenoloxidase 

References

  1. Anese, M., Nicoli, M. C., Dallaglio, G., & Lerici, C. R. (1994). Effect of high pressure treatments on peroxidase and polyphenoloxidase activities. Journal of Food Biochemistry, 18(4), 285–293.CrossRefGoogle Scholar
  2. Anthon, G. E., Sekine, Y., Watanabe, N., & Barrett, D. M. (2002). Thermal inactivation of pectin methylesterase, polygalacturonase, and peroxidase in tomato juice. Journal of Agricultural and Food Chemistry, 50(21), 6153–6159.CrossRefGoogle Scholar
  3. Balny, C., & Masson, P. (1993). Effects of high pressure on proteins. Food Reviews International, 9(4), 611–628.CrossRefGoogle Scholar
  4. Baş, D., & Boyaci, İ. H. (2007). Modeling and optimization I: usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845.CrossRefGoogle Scholar
  5. Basak, S., & Ramaswamy, H. (1996). Ultra high pressure treatment of orange juice: a kinetic study on inactivation of pectin methyl esterase. Food Research International, 29(7), 601–607.CrossRefGoogle Scholar
  6. Basak, S., Ramaswamy, H. S., & Simpson, B. K. (2001). High-pressure inactivation of pectin methyl esterase in orange juice using combination treatments. Journal of Food Biochemistry, 25(6), 509–526.CrossRefGoogle Scholar
  7. Bayindirli, A., Alpas, H., Bozoglu, F., & Hizal, M. (2006). Efficiency of high-pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices. Journal of Food Control, 17(1), 52–58.CrossRefGoogle Scholar
  8. Boulekou, S. S., Katsaros, G. J., & Taoukis, P. S. (2010). Inactivation kinetics of peach pulp pectin methylesterase as a function of high hydrostatic pressure and temperature process conditions. Food and Bioprocess Technology, 3(5), 699–706.CrossRefGoogle Scholar
  9. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.CrossRefGoogle Scholar
  10. Buckow, R., Weiss, U., & Knorr, D. (2009). Inactivation kinetics of apple polyphenol oxidase in different pressure–temperature domains. Innovative Food Science and Emerging Technology, 10(4), 441–448.CrossRefGoogle Scholar
  11. Cano, M. P., Hernandez, A., & Ancos, B. D. (1997) High pressure and temperature effects on enzyme inactivation in strawberry and orange products. Journal of Food Science, 62(1), 85–88.Google Scholar
  12. Cárnara, M., Diez, C., & Torija, E. (1995). Chemical characterization of pineapple juices and nectars. Food Chemistry, 54(1), 93–100.CrossRefGoogle Scholar
  13. Chakraborty, S., Mishra, H. N., & Knorr, D. (2012). Strawberry enzyme inactivation by HPP: models & contours. Saarbruken: Lambert Academic Publishing.Google Scholar
  14. Chakraborty, S., Kaushik, N., Rao, P. S., & Mishra, H. N. (2014). High-pressure inactivation of enzymes: a review on its recent applications on fruit purees and juices. Comprehensive Reviews in Food Science and Food Safety, 13(4), 578–596.CrossRefGoogle Scholar
  15. Cheftel, J. C. (1992). Effects of high hydrostatic pressure on food constituents: An overview. In C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), High pressure and biotechnology (Vol. 224, pp. 195–209). Montrouge: John Libbey Eurotext.Google Scholar
  16. Chutintrasri, B., & Noomhorm, A. (2006). Thermal inactivation of polyphenoloxidase in pineapple puree. LWT--Food Science and Technology, 39(5), 492–495.CrossRefGoogle Scholar
  17. Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tausche, B. (2008). Extraction of anthocyanins from grape by-product assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science and Emerging Technologies, 9(1), 85–91.CrossRefGoogle Scholar
  18. Corzo, C. A., Waliszewski, K. N., & Welti-Chanes, J. (2012). Pineapple fruit bromelain affinity to different protein substrates. Food Chemistry, 133(3), 631–635.CrossRefGoogle Scholar
  19. Dalmadi, I., Rapeanu, G., Van Loey, A., Smout, C., & Hendrickx, M. (2006). Characterization and inactivation by thermal and pressure processing of strawberry (Fragaria ananassa) polyphenol oxidase: a kinetic study. Journal of Food Biochemistry, 30(1), 56–76.CrossRefGoogle Scholar
  20. Fachin, D., Van Loey, A. M., Ly Nguyen, B., Verlent, I., & Hendrickx, M. E. (2003). Inactivation kinetics of polygalacturonase in tomato juice. Innovative Food Science and Emerging Technologies, 4(2), 135–142.CrossRefGoogle Scholar
  21. [FDA] US Food and Drug Administration (2007). Acidified and low-acid canned foods: approximate pH of foods and food products, 1–13. Available from: http://www.foodscience.caes.uga.edu/extension/documents/fdaapproximatephoffoodslacf-phs.pdf.
  22. Giovane, A., Servillo, L., Balestrieri, C., Raiola, A., D'avino, R., Tamburrini, M., Ciardiello, M., & Camardella, L. (2004). Pectin methylesterase inhibitor. Biochim Biophys Acta-Proteins and Proteomics, 1696(2), 245–252.CrossRefGoogle Scholar
  23. Gliemmo, M. F., Latorre, M. E., Gerschenson, L. N., & Campos, C. A. (2009). Color stability of pumpkin (Cucurbita moschata, Duchesne ex Poiret) puree during storage at room temperature: effect of pH, potassium sorbate, ascorbic acid and packaging material. LWT--Food Science and Technology, 42(1), 196–201.CrossRefGoogle Scholar
  24. González-Cebrino, F., García-Parra, J., Contador, R., Tabla, R., & Ramírez, R. (2012). Effect of high-pressure processing and thermal treatment on quality attributes and nutritional compounds of “Songold” plum purée. Journal of Food Science, 77(8), C866–C873.CrossRefGoogle Scholar
  25. Gross, M., & Jaenicke, R. (1994). Proteins under pressure. European Journal of Biochemistry, 221(2), 617–630.CrossRefGoogle Scholar
  26. Guerrero-Beltrán, J. A., Barbosa-Cánovas, G. V., & Swanson, B. G. (2005). High hydrostatic pressure processing of fruit and vegetable products. Food Reviews International, 21(4), 411–425.CrossRefGoogle Scholar
  27. Hagerman, A. E., & Austin, P. J. (1986). Continuous spectrophotometric assay for plant pectin methyl esterase. Journal of Agricultural and Food Chemistry, 34(3), 440–444.CrossRefGoogle Scholar
  28. Heinz, V., & Buckow, R. (2009). Food preservation by high-pressure. Journal of Consumer Protection and Food Safety, 5(1), 73–81.Google Scholar
  29. Jutamongkon, R., & Charoenrein, S. (2010). Effect of temperature on the stability of fruit bromelain from smooth cayenne pineapple. Witthayasan Kasetsart, 44.Google Scholar
  30. Katsaros, G., Katapodis, P., & Taoukis, P. (2009). Modeling the effect of temperature and high hydrostatic pressure on the proteolytic activity of kiwi fruit juice. Journal of Food Engineering, 94(1), 40–45.CrossRefGoogle Scholar
  31. Katsaros, G. I., Tsevdou, M., Panagiotou, T., & Taoukis, P. S. (2010). Kinetic study of high-pressure microbial and enzyme inactivation and selection of pasteurisation conditions for Valencia orange juice. International Journal of Food Science and Technology, 45(6), 1119–1129.CrossRefGoogle Scholar
  32. Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014). Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science and Emerging Technologies, 22, 40–50.CrossRefGoogle Scholar
  33. Knorr, D., Heinz, V., & Buckow, R. (2006). High-pressure application for food biopolymers. Biochimica and Biophysica Acta, 1764(3), 619–631.CrossRefGoogle Scholar
  34. Koca, N., Karadeniz, F., & Burdurlu, H. S. (2007). Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100(2), 609–615.CrossRefGoogle Scholar
  35. Liavoga, A., & Matella, N. J. (2012). Enzymes in quality and processing of tropical and subtropical fruits. In M. Siddiq (Ed.), Tropical and subtropical fruits: postharvest physiology, processing and Ppackaging (pp. 35–51). Oxford: Wiley-Blackwell. doi: 10.1002/9781118324097.ch3.CrossRefGoogle Scholar
  36. Liu, Y., Zhao, X., Zou, L., & Hu, X. (2013). Effect of high hydrostatic pressure on overall quality parameters of watermelon juice. Food Science and Technology International, 19(3), 197–207.CrossRefGoogle Scholar
  37. Ly-Nguyen, B., Loey, A. V., Smout, C., ErenÖzcan, S., Fachin, D., Verlent, I., Vu Truong, S., Duvetter, T., & Hendrickx, M. E. (2003). Mild-heat and high-pressure inactivation of carrot pectin methylesterase: a kinetic study. Journal of Food Science, 68(4), 1377–1383.CrossRefGoogle Scholar
  38. Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11(9), 340–346.CrossRefGoogle Scholar
  39. Maurer, H. R. (2001). Bromelain: biochemistry, pharmacology and medical use. Cellular and Molecular Life Sciences CMLS, 58(9), 1234–1245.CrossRefGoogle Scholar
  40. Montgomery, D. C. (2001). Design and analysis of experiments (pp. 363–510). New York: John Wiley & Sons Inc.Google Scholar
  41. Morild, E. (1981). The theory of pressure effects on enzymes. Advances in Protein Chemistry, 34, 93–166.CrossRefGoogle Scholar
  42. Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., & Balny, C. (1996). High-pressure effects on protein structure and function. Proteins: Structure, Function, and Bioinformatics, 24(1), 81–91.CrossRefGoogle Scholar
  43. Oey, I., Van der Plancken, I., Van Loey, A., & Hendrickx, M. (2008). Does high pressure processing influence nutritional aspects of plant based food systems? Trends in Food Science and Technology, 19(6), 300–308.CrossRefGoogle Scholar
  44. Ortuño, C., Duong, T., Balaban, M., & Benedito, J. (2013). Combined high hydrostatic pressure and carbon dioxide inactivation of pectin methylesterase, polyphenol oxidase and peroxidase in Feijoa puree. The Journal of Supercritical Fluids, 82, 56–62. doi: 10.1016/j.supflu.2013.06.005.CrossRefGoogle Scholar
  45. Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science and Emerging Technologies, 10(3), 308–313.CrossRefGoogle Scholar
  46. Plaza, L., Muñoz, M., de Ancos, B., & Cano, M. P. (2003). Effect of combined treatments of high-pressure, citric acid and sodium chloride on quality parameters of tomato puree. European Food Research and Technology, 216(6), 514–519.Google Scholar
  47. Polydera, A., Galanou, E., Stoforos, N., & Taoukis, P. (2004). Inactivation kinetics of pectin methylesterase of Greek Navel orange juice as a function of high hydrostatic pressure and temperature process conditions. Journal of Food Engineering, 62(3), 291–298.CrossRefGoogle Scholar
  48. Riahi, E., & Ramaswamy, H. S. (2003). High-pressure processing of apple juice: kinetics of pectin methyl esterase inactivation. Biotechnology Progress, 19(3), 908–914.CrossRefGoogle Scholar
  49. Riahi, E., & Ramaswamy, H. S. (2004). High pressure inactivation kinetics of amylase in apple juice. Journal of Food Engineering, 64(2), 151–160.CrossRefGoogle Scholar
  50. Rodrigo, D., Jolie, R., Van Loey, A., & Hendrickx, M. (2006). Combined thermal and high pressure inactivation kinetics of tomato lipoxygenase. European Food Research and Technology, 222(5–6), 636–642.CrossRefGoogle Scholar
  51. Smeller, L. (2002). Pressure-temperature phase diagram of biomolecules. In C. Balny, P. Masson, & K. Heremans (Eds.), Frontiers in high pressure biochemistry and biophysics (pp. 11–29). Amsterdam: Elsevier Science BV.Google Scholar
  52. Sulaiman, A., & Silva, F. V. (2013). High pressure processing, thermal processing and freezing of ‘Camarosa’strawberry for the inactivation of polyphenoloxidase and control of browning. Food Control, 33(2), 424–428. doi: 10.1016/j.foodcont.2013.03.008.CrossRefGoogle Scholar
  53. Svensson, S., & Eriksson, C. (1972). Thermal inactivation of lipoxygenase from peas (Pisum sativum L.) I. Time-temperature relationships and pH dependence. Lebensmittel-Wissenschaft und Technologie, 5, 118–123.Google Scholar
  54. Tauscher, B. (1995). Pasteurization of food by hydrostatic high pressure: chemical aspects. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 200(1), 3–13.CrossRefGoogle Scholar
  55. Terefe, N. S., Yang, Y. H., Knoerzer, K., Buckow, R., & Versteeg, C. (2010). High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science and Emerging Technologies, 11(1), 52–60.CrossRefGoogle Scholar
  56. Vaclavik, V. A., & Christian, E. W. (2003). Essentials of food science. London: Springer.CrossRefGoogle Scholar
  57. Van den Broeck, I., Ludikhuyze, L., Weemaes, C., Van Loey, A., & Hendrickx, M. (1998). Kinetics for isobaric-isothermal degradation of l-ascorbic acid. Journal of Agricultural and Food Chemistry, 46(5), 2001–2006.CrossRefGoogle Scholar
  58. Van Eylen, D., Oey, I., Hendrickx, M., & Van Loey, A. (2008). Effects of pressure/temperature treatments on stability and activity of endogenous broccoli (Brassica oleracea L. cv. Italica) myrosinase and on cell permeability. Journal of Food Engineering, 89(2), 178–186.CrossRefGoogle Scholar
  59. Vernwal, S., Yadav, R., & Yadav, K. (2006). Purification of a peroxidase from Solanum melongena fruit juice. Indian Journal of Biochemistry and Biophysics, 43(4), 239.Google Scholar
  60. Walker, J. R. (1995). Enzymatic browning in fruits: its biochemistry and control. Washington, DC: American Chemical Society.Google Scholar
  61. Weemaes, C. A., Ludikhuyze, L. R., Van den Broeck, I., & Hendrickx, M. E. (1998). Kinetics of combined pressure–temperature inactivation of avocado polyphenoloxidase. Biotechnology and Bioengineering, 60(3), 292–300.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Snehasis Chakraborty
    • 1
  • P. Srinivasa Rao
    • 1
  • H. N. Mishra
    • 1
  1. 1.Agricultural and Food Engineering DepartmentIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations