Food and Bioprocess Technology

, Volume 7, Issue 11, pp 3328–3335 | Cite as

Stimulation of Saccharomyces cerevisiae Cultures by Pulsed Electric Fields

  • Jessy R. Mattar
  • Mohammad F. Turk
  • Maurice Nonus
  • Nikolai I. Lebovka
  • Henri El Zakhem
  • Eugene Vorobiev
Original Paper


The effects of stimulation of Saccharomyces cerevisiae cells in an aqueous suspension by pulsed electric field (PEF) with electric field strength E = 20–2,000 V cm−1 and effective PEF treatment time t PEF = 10−5–1 s were investigated. At relatively high electric field strengths (E > 1,000 V cm−1) and moderate times of PEF treatment (t PEF > 100 μs), the extraction of ionic components from yeast was observed, which can be related to electroporation of cell membranes. Petri dishes counting revealed dependency of the colony sizes on the time of preliminary fermentation t f and power consumption W. The “logarithmic” and “saturated” types of electrostimulation were distinguished. At “logarithmic” electrostimulation (10−7 J mL−1 < W < 10−1 J mL−1), the viability of yeast cells increased with the increase of power consumption and was higher for longer fermentation (t f  = 24 h). However, at “saturated” electrostimulation (10−1 J mL−1 < W < 101 J mL−1), the viability of yeast cells was noticeably higher for t f  = 1 h than for t f  = 24 h. The impact of preliminary fermentation time and PEF protocol on biological activity of cells and consumption of nutrients was also discussed.


Pulsed electric field Electroporation Stimulation Brewer’s yeast S. cerevisiae 



The authors appreciate the financial support from the financial support from the CNRS-Lebanon and the support from the COST Action TD1104 (EP4Bio2Med-European Network for Development of Electroporation-based Technologies and treatments). The authors also thank Dr. N.S. Pivovarova for her help with the preparation of the manuscript.


  1. Araújo, O. Q. F., Coelho, M. A. Z., Margarit, I. C. P., Vaz-Junior, C. A., & Rocha-Leão, M. H. M. (2004). Electrical stimulation of Saccharomyces cerevisiae cultures. Brazilian Journal of Microbiology, 35, 97–103.CrossRefGoogle Scholar
  2. Araújo, O. Q. F., Oliveira, A. A. C., Torres, C. C. O., Rocha-Leão, M. H., Margarit, I. C. P., & Coelho, M. A. Z. (2007). Glucose uptake in electrically stimulated cultures of Saccharomyces cerevisiae. In: Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-20 September 2007 (pp. 1–9).Google Scholar
  3. Barbosa-Cánovas, G. V., Fernández-Molina, J. J., & Swanson, B. G. (2001). Pulsed electric fields: a novel technology for food preservation. Agro Food Industry Hi Tech, 12(2), 9–14.Google Scholar
  4. Berg, H. (1995). Possibilities and problems of low frequency weak electromagnetic fields in cell biology. Bioelectrochemistry and Bioenergetics, 38(1), 153–159.CrossRefGoogle Scholar
  5. Bluhm, H., & Sack, M. (2008). Industrial-scale treatment of biological tissues with pulsed electric fields. In E. Vorobiev & N. Lebovka (Eds.), Electrotechnologies for extraction from food plants and biomaterials (pp. 237–269). New York: Springer.Google Scholar
  6. Castro, I., Teixeira, J. A., & Vicente, A. A. (2012). The effect of the electric field on lag-phase, ethanol and β-galactosidase production of a recombinant S. cerevisiae growing on lactose. Food and Bioprocess Technology, 5(8), 3014–3020.CrossRefGoogle Scholar
  7. Cserhalmi, Z., Vidacs, I., Beczner, J., & Czukor, B. (2002). Inactivation of Saccharomyces cerevisiae and Bacillus cereus by pulsed electric fields technology. Innovative Food Science & Emerging Technologies, 3(1), 41–45.CrossRefGoogle Scholar
  8. Dimitrov, D. S., & Sowers, A. E. (1990). Membrane electroporation: fast molecular exchange by electroosmosis. Biochimica et Biophysica Acta, 1022, 381–392.CrossRefGoogle Scholar
  9. Donsi, F., Ferrari, G., & Pataro, G. (2010). Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews, 2(2), 109–130. doi: 10.1007/s12393-010-9015-3.CrossRefGoogle Scholar
  10. El Zakhem, H., Lanoiselle, J. L., Lebovka, N. I., Nonus, M., & Vorobiev, E. (2006a). Behavior of yeast cells in aqueous suspension affected by pulsed electric field. Journal of Colloid and Interface Science, 300(2), 553–563.CrossRefGoogle Scholar
  11. El Zakhem, H., Lanoiselle, J.-L., Lebovka, N. I., Nonus, M., & Vorobiev, E. (2006b). The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields. Colloids and Surfaces B Biointerfaces, 47(2), 189–197.CrossRefGoogle Scholar
  12. Fiedler, U., Gröbner, U., & Berg, H. (1995). Electrostimulation of yeast proliferation. Bioelectrochemistry and Bioenergetics, 38(2), 423–425.CrossRefGoogle Scholar
  13. Fologea, D., Vassu-Dimov, T., Stoica, I., Csutak, O., & Radu, M. (1998). Increase of Saccharomyces cerevisiae plating efficiency after treatment with bipolar electric pulses. Bioelectrochemistry and Bioenergetics, 46(2), 285–287.CrossRefGoogle Scholar
  14. Fologea, D., Vassu, T., Stoica, I., Csutak, O., Sasarman, E., Smarandache, D., et al. (2004). Efficient electrotransformation of yeast using bipolar electric pulses. Romanian Biotechnological Letters, 9, 1505–1510.Google Scholar
  15. Ganeva, V., Galutzov, B., & Teissié, J. (2003). High yield electroextraction of proteins from yeast by a flow process. Analytical Biochemistry, 315(1), 77–84.CrossRefGoogle Scholar
  16. Ganeva, V., Galutzov, B., & Teissie, J. (2004). Flow process for electroextraction of intracellular enzymes from the fission yeast, Schizosaccharomyces pombe. Biotechnology Letters, 26(11), 933–937. doi: 10.1023/B:bile.0000025906.95694.1a.CrossRefGoogle Scholar
  17. Jin, Y., Wang, M., Lin, S., Guo, Y., Liu, J., & Yin, Y. (2011). Optimization of extraction parameters for trehalose from beer waste brewing yeast treated by high-intensity pulsed electric fields (PEF). African Journal of Biotechnology, 10(82), 19144–19152. doi: 10.5897/AJB11.2687.Google Scholar
  18. Knorr, D., Engel, K.-H., Vogel, R., Kochte-Clemens, B., & Eisenbrand, G. (2008). Statement on the treatment of food using a pulsed electric field. Molecular Nutrition & Food Research, 52(12), 1539–1542. doi: 10.1002/mnfr.200800391.CrossRefGoogle Scholar
  19. Liu, Z., Yang, R., & Zhao, W. (2007). Extraction of protein and nucleic acid from waste beer yeast with pulsed electric fields. Shipin Gongye Keji, 28(3), 85–88.Google Scholar
  20. Liu, M., Zhang, M., Lin, S., Liu, J., Yang, Y., & Jin, Y. (2012). Optimization of extraction parameters for protein from beer waste brewing yeast treated by pulsed electric fields (PEF). African Journal of Microbiology Research, 6(22), 4739–4746. doi: 10.5897/AJMR12.117.Google Scholar
  21. Liu, D., Lebovka, N. I., & Vorobiev, E. (2013). Impact of electric pulse treatment on selective extraction of intracellular compounds from Saccharomyces cerevisiae yeasts. Food and Bioprocess Technology, 6(2), 576–584.CrossRefGoogle Scholar
  22. Lustrato, G., Alfano, G., Belli, C., Grazia, L., Iorizzo, M., Maiuro, L., et al. (2003). Controlling grape must fermentation in early winemaking phases: the role of electrochemical treatment. Journal of Applied Microbiology, 95(5), 1087–1095.CrossRefGoogle Scholar
  23. McCabe, A., Barron, N., McHale, L., & McHale, A. P. (1995). Increased efficiency of substrate utilization by exposure of the thermotolerant yeast strain, Kluyveromyces marxianus IMB3 to electric-field stimulation. Biotechnology Techniques, 9(2), 133–136.CrossRefGoogle Scholar
  24. Nakanishi, K., Tokuda, H., Soga, T., Yoshinaga, T., & Takeda, M. (1998). Effect of electric current on growth and alcohol production by yeast cells. Journal of Fermentation and Bioengineering, 85(2), 250–253.CrossRefGoogle Scholar
  25. Nawarathna, D., Miller, J. H., Claycomb, J. R., Cardenas, G., & Warmflash, D. (2005). Harmonic response of cellular membrane pumps to low frequency electric fields. Physical Review Letters, 95(15), 158103. doi: 10.1103/PhysRevLett.95.158103.CrossRefGoogle Scholar
  26. Nawarathna, D., Claycomb, J. R., Cardenas, G., Gardner, J., Warmflash, D., Miller, J. H., et al. (2006). Harmonic generation by yeast cells in response to low-frequency electric fields. Physical Review E, 73(5), 51914. doi: 10.1103/PhysRevE.73.051914.CrossRefGoogle Scholar
  27. Ohshima, T., & Sato, M. (2004). Bacterial sterilization and intracellular protein release by a pulsed electric field. Advances in Biochemical Engineering/Biotechnology, 90, 113–133.CrossRefGoogle Scholar
  28. Ohshima, T., Sato, M., & Saito, M. (1995). Selective release of intracellular protein using pulsed electric field. Journal of Electrostatics, 35(1), 103–112.CrossRefGoogle Scholar
  29. Pakhomov, A. G., Miklavcic, D., & Markov, M. S. (Eds.). (2010). Advanced electroporation techniques in biology and medicine Food and biomaterials processing assisted by electroporation. New York: CRC Press.Google Scholar
  30. Palaniappan, S., Sastry, S. K., & Richter, E. R. (1990). Effects of electricity on microorganisms: a review. Journal of Food Processing and Preservation, 14(5), 393–414. doi: 10.1111/j.1745-4549.1990.tb00142.x.CrossRefGoogle Scholar
  31. Pankiewicz, U., & Jamroz, J. (2008). Accumulation of selenium and catalase activity changes in the cells of Saccharomyces cerevisiae on pulsed electric field (PEF) treatment. Annals of Microbiology (Milano, Italy), 58(2), 239–243. doi: 10.1007/BF03175323.CrossRefGoogle Scholar
  32. Pankiewicz, U., & Jamroz, J. (2010). Effect of pulsed electric fields upon accumulation of magnesium in Saccharomyces cerevisiae. European Food Research and Technology, 231(5), 663–668.CrossRefGoogle Scholar
  33. Pankiewicz, U., & Jamroz, J. (2011). Effect of pulsed electric fields upon accumulation of zinc in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology, 21(6), 646–651.Google Scholar
  34. Pataro, G., Senatore, B., Donsì, G., & Ferrari, G. (2011). Effect of electric and flow parameters on PEF treatment efficiency. Journal of Food Engineering, 105(1), 79–88.CrossRefGoogle Scholar
  35. Peng, L., & Zeng, X. (2011). Effect of ultrasonic, PEF and microwave on the extraction of trehalose from yeast cells. Shipin Keji, 36(7), 161–165.Google Scholar
  36. Petrofsky, J., Laymon, M., Chung, W., Collins, K., & Yang, T.-N. (2006). Effect of electrical stimulation on bacterial growth. The Journal of Neurological and Orthopaedic Medicine and Surgery(archive of reprints),1-21. Web address:
  37. Raso, J., & Heinz, V. (Eds.). (2006). Pulsed electric field technology for the food industry. Fundamentals and applications. New York: Springer.Google Scholar
  38. Sauer, U. (2001). Evolutionary engineering of industrially important microbial phenotypes. In T. Scheper (Ed.), Advances in biochemical engineering/biotechnology (Vol. 73, pp. 130–167). Berlin: Springer.Google Scholar
  39. Schrive, L., Grasmick, A., Moussiere, S., & Sarrade, S. (2006). Pulsed electric field treatment of Saccharomyces cerevisiae suspensions: a mechanistic approach coupling energy transfer, mass transfer and hydrodynamics. Biochemical Engineering Journal, 27(3), 212–224.CrossRefGoogle Scholar
  40. Shynkaryk, M. V., Lebovka, N. I., Lanoisellé, J. L., Nonus, M., Bedel-Clotour, C., & Vorobiev, E. (2009). Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae). Journal of Food Engineering, 92(2), 189–195.CrossRefGoogle Scholar
  41. Simpson, J., Brady, D., Rollan, A., Barron, N., McHale, L., & McHale, A. P. (1995). Increased ethanol production during growth of electric-field stimulated Kluweromyces marxianus IMB3 during growth on lactose-containing media at 45 C. Biotechnology Letters, 17(7), 1757–1760.CrossRefGoogle Scholar
  42. Somolinos, M., Garcia, D., Condon, S., Manas, P., & Pagan, R. (2007). Relationship between sublethal injury and inactivation of yeast cells by the combination of sorbic acid and pulsed electric fields. Applied and Environmental Microbiology, 73(12), 3814–3821.CrossRefGoogle Scholar
  43. Somolinos, M., Mañas, P., Condón, S., Pagán, R., & García, D. (2008). Recovery of Saccharomyces cerevisiae sublethally injured cells after pulsed electric fields. International Journal of Food Microbiology, 125(3), 352–356.CrossRefGoogle Scholar
  44. Suga, M., & Hatakeyama, T. (2009). Gene transfer and protein release of fission yeast by application of a high voltage electric pulse. Analytical and Bioanalytical Chemistry, 394(1), 13–16.CrossRefGoogle Scholar
  45. Suga, M., Goto, A., & Hatakeyama, T. (2006). Control by osmolarity and electric field strength of electro-induced gene transfer and protein release in fission yeast cells. Journal of Electrostatics, 64(12), 796–801. doi: 10.1016/j.elstat.2006.01.007.CrossRefGoogle Scholar
  46. Tanino, T., Sato, S., Oshige, M., & Ohshima, T. (2012). Analysis of the stress response of yeast Saccharomyces cerevisiae toward pulsed electric field. Journal of Electrostatics, 70(2), 212–216.CrossRefGoogle Scholar
  47. Teissié, J., Eynard, N., Vernhes, M. C., Bénichou, A., Ganeva, V., Galutzov, B., et al. (2002). Recent biotechnological developments of electropulsation. A prospective review. Bioelectrochemistry, 55(1–2), 107–112.CrossRefGoogle Scholar
  48. Tsong, T. Y. (1991). Electroporation of cell membranes. Biophysical Journal, 60(2), 297–306. doi: 10.1016/S0006-3495(91)82054-9.CrossRefGoogle Scholar
  49. Vassu, T., Fologea, D., Csutak, O., Smarandache, D., Sasarman, E., Stoica, I., et al. (2004). Secondary effects of electroporation with bipolar electric pulses: electrostimulation. Romanian Biotechnological Letters, 9, 1541–1544.Google Scholar
  50. Vega-Mercado, H., Belloso, O. M., Qin, B.-L., Chang, F. J., Gongora-Nieto, M. M., Barbosa-Canovas, G. V., et al. (1997). Non-thermal food preservation: pulsed electric fields. Trends in Food Science & Technology, 8(5), 151–157. doi: 10.1016/S0924-2244(97)01016-9.CrossRefGoogle Scholar
  51. Walther, T., Reinsch, H., Grose, A., Ostermann, K., Deutsch, A., & Bley, T. (2004). Mathematical modeling of regulatory mechanisms in yeast colony development. Journal of Theoretical Biology, 229, 327–338.CrossRefGoogle Scholar
  52. Wang, M., Jin, Y., Liu, M., Zhang, M., Yang, Y., & Lin, S. (2011). Activating effect of pulsed electric field treatment on trehalose activity in waste brewing yeast cells. Shipin Kexue (Beijing, China), 32(23), 87–90.Google Scholar
  53. Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: a review. Bioelectrochemistry and Bioenergetics, 41(2), 135–160.CrossRefGoogle Scholar
  54. Xie, G., Yang, R., Lu, R., Zhang, W., & Zhao, W. (2008). Release of protein and nucleic acid by inducing brewer yeast cell with high-voltage pulsed electric fields. Shipin Yu Fajiao Gongye, 34(3), 44–47.Google Scholar
  55. Ye, H., Jin, Y., Lin, S., Liu, M., Yang, Y., Zhang, M., et al. (2012). Effect of pulsed electric fields on the activity of neutral trehalase from beer yeast and RSM analysis. International Journal of Biological Macromolecules, 50(5), 1315–1321.CrossRefGoogle Scholar
  56. Zhang, Q., Monsalve-Gonzalez, A., Qin, B. L., Barbosa-Canovas, G. V., & Swanson, B. G. (1994). Inactivation of Saccharomyces cerevisiae in apple juice by square-wave and exponential-decay pulsed electric field. Journal of Food Process Engineering, 17(4), 469–478.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jessy R. Mattar
    • 1
    • 2
  • Mohammad F. Turk
    • 3
  • Maurice Nonus
    • 1
  • Nikolai I. Lebovka
    • 1
    • 4
  • Henri El Zakhem
    • 2
  • Eugene Vorobiev
    • 1
  1. 1.Équipe TAI EA TIMR 4297, Université de Technologie de CompiègneCentre de Recherche de RoyallieuCompiègne cedexFrance
  2. 2.Chemical Engineering DepartmentUniversity of BalamandAmiounLebanon
  3. 3.Équipe TAI EA TIMR 4297École Supérieure de Chimie Organique et MinéraleCompiègne cedexFrance
  4. 4.Department of Physical Chemistry of Disperse MineralsInstitute of Biocolloidal Chemistry named after F.D. Ovcharenko, NAS of UkraineVernadskogoUkraine

Personalised recommendations