Food and Bioprocess Technology

, Volume 7, Issue 11, pp 3282–3292 | Cite as

Quality and Acceptability of Microwave and Conventionally Pasteurised Kiwifruit Puree

  • María Benlloch-Tinoco
  • Marta Igual
  • Ana Salvador
  • Dolores Rodrigo
  • Nuria Martínez-Navarrete
Original Paper


The development and optimisation of food preservation processes seem to be necessary in order to address consumer expectations related to secure, fresh-like foods. To this end, the sensory, nutritional and functional properties must be maximally retained. In order to contribute to the acquisition of knowledge about the adequacy of microwave processing as a means of preserving fruit-based products, the present study compares the impact of microwave heating with conventional thermal processing. The consumer acceptance of fresh and pasteurised kiwifruit puree was studied as was the content of water, soluble solids and bioactive compounds and the pH, consistency, viscosity, colour coordinates and antioxidant capacity, as well as the effect of the thermal treatment on enzyme and microbial inactivation. As bioactive compounds, the content of vitamins C, A and E and the total flavonoid, phenol and tannin content have been considered. As the obtained results show, not only was microwaved puree preferred by consumers, but it also exhibited a superior maintenance of the nutritive and functional properties of the fruit, smaller colour changes and a content of inactivated enzymes and microorganisms equal to or greater than the conventionally heated sample.


Consumer perception Bioactive compounds Enzymes Microorganisms Microwave heating Conventional heating 



Microwave heating




Conventional heating




Polyphenol oxidase


Pectin methylesterase


Total phenols


Total tannins


Total flavonoids


Total mesophilic bacteria


Yeast and mould


Colour difference



The authors thank the Ministerio de Educación y Ciencia for the financial support given throughout the Project AGL 2010-22176 and AGL 2010-22206-C02-01 and the grant awarded to the author María Benlloch.


  1. Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: principles and overview. Chemical Engineering and Processing, 46, 584–602.CrossRefGoogle Scholar
  2. Barboni, T., Cannac, M., & Chiaramonti, N. (2010). Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chemistry, 121, 946–951.CrossRefGoogle Scholar
  3. Barrett, D. M., & Lloyd, B. (2012). Advanced preservation methods and nutrient retention in fruits and vegetables. Journal of Food Science and Agriculture, 92, 7–22.CrossRefGoogle Scholar
  4. Benlloch-Tinoco, M., Pina-Pérez, M. C., Martínez-Aguirre, C., Rodrigo, D., & Martínez-Navarrete, N. (2012a) Microwave processing for kiwifruit puree preservation. In: Martínez A, Rosenthal A, Koutchma T, Mutukumira A N, Klein G, Warriner K, Zanini S, Rodrigo D, Pina-Pérez M C, Belda-Galbis C M (ed) Technologies and innovations applied to food safety, pp 200-210, Spain.Google Scholar
  5. Benlloch-Tinoco, M., Varela, P., Salvador, A., & Martínez-Navarrete. (2012b). Effects of microwave heating on sensory characteristics of kiwifruit puree. Food and Bioprocess Technology, 5, 3021–3031.CrossRefGoogle Scholar
  6. Benlloch-Tinoco, M., Igual, M., Rodrigo, D., & Martínez-Navarrete. (2013). Comparison of microwaves and conventional thermal treatment on enzymes activity and antioxidant capacity of kiwifruit puree. Innovative Food Science and Emerging Technologies, 19, 166–172.CrossRefGoogle Scholar
  7. Benlloch-Tinoco, M., Martínez-Navarrete, N., & Rodrigo, D. (2014). Impact of temperature on lethality of kiwifruit puree pasteurization by thermal and microwave processing. Food Control, 35, 22–25.CrossRefGoogle Scholar
  8. Bodart, M., de Peñaranda, R., Deneyer, A., & Flamant, G. (2008). Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Building and Environment, 43, 2046–2058.CrossRefGoogle Scholar
  9. Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2007). Influence of osmotic pre-treatment and microwave application on properties of air dried strawberry related to structural changes. European Food Research and Technology, 224, 499–504.CrossRefGoogle Scholar
  10. Cruz, A. G., Cadena, R. S., Faria, J. A. F., Bolini, H. M. A., Dantas, C., Ferreira, M. M. C., & Deliza, R. (2012). PARAFAC: adjustment for modeling consumer study covering probiotic and conventional yogurt. Food Research International, 45, 211–215.CrossRefGoogle Scholar
  11. Da Costa, M. C., Deliza, R., Rosenthal, A., Hedderley, D., & Frewer, L. (2000). Non conventional technologies and impact on consumer behaviour. Trends in Food Science & Technology, 11, 188–193.CrossRefGoogle Scholar
  12. Desai, N. T., Shepard, L., & Drake, M. A. (2013). Sensory properties and drivers of liking for Greek yogurts. Journal of Dairy Science, 96, 7454–7466.CrossRefGoogle Scholar
  13. Di Monaco, R., Cavella, S., Torrieri, E., & Masi, P. (2005). Consumer acceptability of vegetable soups. Journal of Sensory Studies, 22, 81–98.Google Scholar
  14. Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97, 654–660.CrossRefGoogle Scholar
  15. Elez-Martínez, P., Aguiló-Aguayo, I., & Martín-Belloso, O. (2006). Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 87, 71–81.CrossRefGoogle Scholar
  16. Fathima, A., Begum, K., & Rajalakshmi, D. (2001). Microwave drying of selected greens and their sensory characteristics. Plant Foods for Human Nutrition, 56, 303–311.CrossRefGoogle Scholar
  17. FDA. Food and Drug Administration, Department of Health and Human Services. (2004). Juice HACCP hazards and controls guidance. 437 ents/Juice/ucm072557.htm. Accessed 8 March 2012.
  18. Fiorentino, A., D’Abrosca, B., Pacifico, S., Mastellones, C., Scognamiglio, M., & Monaco, P. (2009). Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. Journal of Agricultural and Food Chemistry, 57, 4148–4155.CrossRefGoogle Scholar
  19. García-Martínez, E., Igual, M., Martín-Esparza, M. E., & Martínez-Navarrete, N. (2012). Assessment of the bioactive compounds, color, and mechanical properties of apricots as affected by drying treatment. Food and Bioprocess Technology, 6, 3247–3255.CrossRefGoogle Scholar
  20. Gerard, K. A., & Roberts, J. S. (2004). Microwave heating of apple mash to improve juice yield and quality. LWT--Food Science and Technology, 37, 551–557.CrossRefGoogle Scholar
  21. Guan, D., Plotka, V. C. F., Clark, S., & Tang, J. (2002). Sensory evaluation of microwave treated macaroni and cheese. Journal of Food Processing and Preservation, 26, 307–322.CrossRefGoogle Scholar
  22. Huang, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea. Journal of Food Engineering, 78, 687–692.CrossRefGoogle Scholar
  23. Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118(2), 291–299.CrossRefGoogle Scholar
  24. Igual, M., García-Martínez, E., Camacho, M. d. M., & Martínez-Navarrete, N. (2013). Physicochemical and sensorial properties of grapefruit jams as affected by processing. Food and Bioprocess Technology, 6(1), 177–185.CrossRefGoogle Scholar
  25. ISO 8589. (1988). Sensory analysis—general guidance for design of test rooms. Standard no. 8589. Geneva, Switzerland.Google Scholar
  26. Kermasha, S., Bisakwski, B., Ramaswamy, H., & Van de Voort, F. R. (1993). Thermal and microwave inactivation of soybean lipoxygenase. LWT--Food Science and Technology, 26, 215–219.CrossRefGoogle Scholar
  27. Laguna, L., Varela, P., Salvador, A., & Fiszman, S. (2013). A new sensory tool to analyze the oral trajectory of biscuits with different fat and fibre contents. Food Research International, 51, 544–553.CrossRefGoogle Scholar
  28. Lawless, H. T., & Heymann, H. H. (1998). Sensory evaluation of food: principles and practices. New York: Chapman & Hall.Google Scholar
  29. Matsui, K. N., Gut, J. A. W., de Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88, 169–176.CrossRefGoogle Scholar
  30. NACMCF. National Advisory Committee on Microbiological Criteria for Foods. (2006). Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. Journal of Food Protection, 69(5), 1190–1216.Google Scholar
  31. Park, Y.-S., Leontowicz, H., Leontowicz, M., Namiesnik, J., Suhaj, M., Cvikrová, M., Martincová, O., Weisz, M., & Gorinstein, S. (2011). Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. Journal of Food Composition and Analysis, 24, 963–970.CrossRefGoogle Scholar
  32. Picouet, P. A., Landl, A., Abadias, M., Castellari, M., & Viñas, I. (2009). Minimal processing of a Granny Smith apple purée by microwave heating. Innovative Food Science & Emerging Technologies, 10(4), 545–550.CrossRefGoogle Scholar
  33. Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Research International, 44, 1875–1887.CrossRefGoogle Scholar
  34. Rothman, L. (2007). The use of just-about-right (JAR) scales in food product development and reformulation. In H. Macfie (Ed.), Consumer-led food product development (pp. 407–433): Woodhead Publishing in Food Science, Technology and Nutrition.Google Scholar
  35. Salazar-González, C., San Martín-González, M. F., López-Malo, A., & Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food Bioprocess and Technology, 5, 31–46.CrossRefGoogle Scholar
  36. Señorans, F. J., Ibáñez, E., & Cifuentes, A. (2003). New trends in food processing. Critical Reviews in Food Science and Nutrition, 43(5), 507–526.CrossRefGoogle Scholar
  37. Silva, F. V. M., & Silva, C. L. M. (1997). Quality optimization of hot filled pasteurized fruit purees: container characteristics and filling temperatures. Journal of Food Engineering, 32, 351–364.CrossRefGoogle Scholar
  38. Taira, S. (1995). Astringency in persimmon. In H.-F. Linskens & J. F. Jackson (Eds.), Fruit analysis (pp. 97–110). Berlin, Germany: Springer.Google Scholar
  39. Tajchakavit, S., & Ramaswamy, H. S. (1997). Thermal vs. microwave inactivation kinetic of pectin methylesterase in orange juice under batch mode heating conditions. LWT—Food. Science and Technology, 30, 85–93.Google Scholar
  40. Tanaka, K., Hashimoto, T., Tokumaru, S., Iguchi, H., & Kojo, S. (1997). Interactions between vitamin C and vitamin E are observed in tissues of inherently scorbutic rats. The Journal of Nutrition, 127(10), 2060–2064.Google Scholar
  41. Valero, E., Villamiel, M., Sanz, J., & Martínez-Castro, I. (2000). Chemical and sensorial changes in milk pasteurised by microwave and conventional systems during cold storage. Food Chemistry, 70, 77–81.CrossRefGoogle Scholar
  42. Villegas, B., Tárrega, A., Carbonell, I., & Costell, E. (2010). Optimising acceptability of new prebiotic low-fat milk beverages. Food Quality and Preference, 21, 234–242.CrossRefGoogle Scholar
  43. Xiong, R., & Meullenet, J. F. (2006). A PLS dummy variable approach to assess the impact of jar attributes on liking. Food Quality and Preference, 17, 188–198.CrossRefGoogle Scholar
  44. Zheng, H., & Lu, H. (2011). Effect of microwave pretreatment on the kinetics of ascorbic acid degradation and peroxidase inactivation in different parts of green asparagus (Asparagus officinalis L.) during water blanching. Food Chemistry, 128, 1087–1093.CrossRefGoogle Scholar
  45. Zolfaghari, M., Sahari, M. A., Barzegar, M., & Samadloiy, H. (2010). Physicochemical and enzymatic properties of five kiwifruit cultivars during cold storage. Food and Bioprocess Technology, 3, 239–246.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • María Benlloch-Tinoco
    • 1
  • Marta Igual
    • 1
  • Ana Salvador
    • 2
  • Dolores Rodrigo
    • 2
  • Nuria Martínez-Navarrete
    • 1
  1. 1.Food Investigation and Innovation Group, Food Technology DepartmentUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), AvdaPaternaSpain

Personalised recommendations