Food and Bioprocess Technology

, Volume 7, Issue 10, pp 2932–2941 | Cite as

Preparation and Characterization of Antimicrobial Films Based on Chitosan for Active Food Packaging Applications

  • M. A. Lago
  • R. Sendón
  • A. Rodríguez-Bernaldo de Quirós
  • A. Sanches-Silva
  • H. S. Costa
  • D. I. Sánchez-Machado
  • H. Soto Valdez
  • I. Angulo
  • G. P. Aurrekoetxea
  • E. Torrieri
  • J. López-Cervantes
  • P. Paseiro
Original Paper

Abstract

The aim of this paper was to characterize chitosan samples from the shrimp shells for the later development of antimicrobial active systems. These systems include 100 % chitosan-based films obtained by casting, polyamide films with 5 and 10 % of chitosan obtained by extrusion and polyethylene/polyethylene terephthalate films with a coating of 0.6 % of chitosan. For that purpose, several analytical techniques including IR, 1H NMR, GPC, and microscopic techniques (scanning electron microscopy and transmission electron microscopy) were used. Within the studied samples, C1 showed the lowest DA and MW and consequently presented the most suitable properties for the development of an active packaging. Additionally, mechanical properties were performed. The effectiveness of the developed systems was evaluated by means of microbiological assays. The tested films showed antimicrobial capacity against coliform enterobacteria, mesophilic aerobic microorganism, and yeast and moulds.

Keywords

Chitosan Active packaging Films characterization Mechanical properties Antimicrobial effect 

Notes

Acknowledgments

This work was funded under Project no. 95935 from FONCICYT C002-2008-1/ALA 127 249. The authors are grateful to “Ministerio de Economía y Competitividad” for the Predoctoral fellowship FPI (Ref. BES-2012-051993) awarded to Miguel Ángel Lago. Raquel Sendón is grateful to the “Parga Pondal” program financed by “Consellería de Innovación e Industria, Xunta de Galicia” for her postdoctoral contract. The authors are also grateful to Patricia Blanco, Cristina Casal, and Gonzalo Hermelo for their excellent technical assistance.

References

  1. Abdou, E. S., Nagy, K. S. A., & Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99, 1359–1367.CrossRefGoogle Scholar
  2. Aider, M. (2008). Chitosan applications for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43, 837–842.CrossRefGoogle Scholar
  3. Al Sagheer, F. A., Al-Sughayer, M. A., Muslim, S., & Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 77, 410–419.CrossRefGoogle Scholar
  4. Aldemir, T., & Bostan, K. (2009). Effects of chitosan on the microbiological quality of ready to cook meatball. Journal of Faculty of Veterinary Medicine, 35(2), 13–21. Istanbul University.Google Scholar
  5. Alisashi, A., & Aïder, M. (2012). Applications of chitosan in the seafood industry and aquaculture: a review. Food and Bioprocess Technology, 5(3), 817–830.CrossRefGoogle Scholar
  6. Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles-Monal, W., Desbrières, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42, 3569–3580.CrossRefGoogle Scholar
  7. Cai, J., Yang, J., Du, Y., Fan, L., Qiu, Y., Li, J., et al. (2006). Enzymatic preparation of chitosan from the waste Aspergilus niger mycelium of citric acid production plant. Carbohydrate Polymers, 64, 151–157.CrossRefGoogle Scholar
  8. Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2012). Effects of interactions between the constituents of chitosan-edible films on their physical properties. Food and Bioprocess Technology, 5(8), 3181–3192.CrossRefGoogle Scholar
  9. Darmadji, P., & Izumimoto, M. (1994). Effect of chitosan in meat preservation. Meat Science, 38, 243–254.CrossRefGoogle Scholar
  10. Duarte, M. L., Ferreira, M. C., Marvão, M. R., & Rocha, J. (2002). An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. International Journal of Biological Macromolecules, 31, 1–8.CrossRefGoogle Scholar
  11. Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114, 1173–1182.CrossRefGoogle Scholar
  12. Fernández-Cervera, M., Heinämäki, J., Räsänen, M., Maunu, S. L., Karjalainen, M., Nieto Acosta, O. M., et al. (2004). Solid-state characterization of chitosans derived from lobster chitin. Carbohydrate Polymers, 58, 401–408.CrossRefGoogle Scholar
  13. Fernández-Megia, E., Novoa-Carballal, R., Quiñoá, E., & Riguera, R. (2005). Optimal route conditions for the determination of the degree of acetylation of chitosan by 1H NMR. Carbohydrate Polymers, 61, 155–161.CrossRefGoogle Scholar
  14. Fimbeau, S., Grelier, S., Copinet, A., & Coma, V. (2006). Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydrate Polymers, 65, 185–193.CrossRefGoogle Scholar
  15. Gartner, C., Peláez, C., & López, B. L. (2010). Characterization of chitin and chitosan extracted from shrimp shells by two methods. e-polymers, 69, 1–16.Google Scholar
  16. Gómez-Estaca, J., López de Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatine-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27, 889–896.CrossRefGoogle Scholar
  17. Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., & Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology, 71(2–3), 235–244.CrossRefGoogle Scholar
  18. Hirai, A., Odani, H., & Nakajima, A. (1991). Determination of degree of deacetylation of chitosan samples by 1H NMR spectroscopy. Polymer Bulletin, 26, 87–94.CrossRefGoogle Scholar
  19. Hirano, S., Itakura, C., Seino, H., Akiyama, Y., Nonaka, I., Kanbara, N., et al. (1990). Chitosan as an ingredient for domestic animal feeds. Journal of Agricultural and Food Chemistry, 38(5), 1214–1217.CrossRefGoogle Scholar
  20. ISO. (2003). ISO 4833:2003. Microbiology of food and animal feeding stuffs -Horizontal method for the enumeration of microorganisms—colony-count technique at 30 °C. Switzerland: International Organisation for Standardisation.Google Scholar
  21. ISO. (2006). ISO 4832:2006. Microbiology of food and animal feeding stuffs -Horizontal method for the enumeration of coliforms—colony-count technique. Switzerland: International Organisation for Standardisation.Google Scholar
  22. ISO. (2008). ISO 21527-1:2008. Microbiology of food and animal feeding stuffs—horizontal meth for the enumeration of yeasts and moulds—part 1: colony count technique in products with water activity greater than 0,95. Switzerland: International Organisation for Standardisation.Google Scholar
  23. ISO. (2001). ISO 16649-2:2001. Microbiology of food and animal feeding stuffs—horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli—part 2: colony-count technique at 44 °C using 5-bromo-4-chloro-3-indolyl beta- d -glucuronide. Switzerland: International Organisation for Standardisation.Google Scholar
  24. Jayakumar, R., Prabaharan, M., Nair, S. V., Tokura, S., Tamura, H., & Selvamurugan, N. (2010). Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Material Science, 55, 675–709.CrossRefGoogle Scholar
  25. Joerger, R. D. (2007). Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packaging Technology & Science, 20, 231–273.CrossRefGoogle Scholar
  26. Kasaai, M. R. (2008). A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymers, 71, 497–508.CrossRefGoogle Scholar
  27. Ko, M. J., Jo, W. H., Kim, H. C., & Lee, S. C. (1997). Miscibility of chitosan/polyamide 6 blends. Polymer Journal, 28(12), 997–1001.CrossRefGoogle Scholar
  28. Kurek, M., Brachais, C. H., Nguimjeu, C. M., Bonnnotte, A., Voilley, A., Galic, K., et al. (2012). Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polymer Degradation and Stability, 97, 1232–1240.CrossRefGoogle Scholar
  29. Kurita, K. (2006). Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnology, 8, 203–226.CrossRefGoogle Scholar
  30. Lavertu, M., Xia, Z., Serreqi, A. N., Berrada, M., Rodrigues, A., Wang, D., et al. (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, 32, 1149–1158.CrossRefGoogle Scholar
  31. Leleu, S., Herman, L., Heyndrickx, M., De Reu, K., Michiels, C. W., De Baerdemaeker, J., et al. (2011). Effects of Salmonella shell contamination and trans-shell penetration of coating hens eggs with chitosan. International Journal of Food Microbiology, 145, 43–48.CrossRefGoogle Scholar
  32. López, F. A., Mercê, A. L. R., Alguacil, F. J., & López-Delgado, A. (2008). A kinetic study on the termal behavior of chitosan. Journal of Thermal Analysis and Calorimetry, 91(2), 633–639.CrossRefGoogle Scholar
  33. Nguyen, S., Hisiger, S., Jolicoeur, M., Winnik, F. M., & Buschmann, M. D. (2009). Fractionation and characterization of chitosan by analytical SEC and 1H NMR after semi-preparative SEC. Carbohydrate Polymers, 75, 636–645.CrossRefGoogle Scholar
  34. No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74(1), 65–72.CrossRefGoogle Scholar
  35. No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: a review. Journal of Food Science, 72(5), R87–R100.CrossRefGoogle Scholar
  36. Pockett, P. (2004) Crystallinity in linear polyamides: a study using melt blending with small-molecule diluents. PhD Thesis. Department of Applied Science, University of South Australia, Adelaide, Australia.Google Scholar
  37. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Sagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457–1461.CrossRefGoogle Scholar
  38. Ratto, J. A., Chen, C. C., & Blumstein, R. B. (1996). Phase behavior study of chitosan/polyamide blends. Journal of Applied Polymer Science, 59, 1451–1461.CrossRefGoogle Scholar
  39. Rhoades, J., & Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology, 66(1), 80–86.CrossRefGoogle Scholar
  40. Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science, 31, 603–622.CrossRefGoogle Scholar
  41. Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57, 397–430.CrossRefGoogle Scholar
  42. Roberts, M. F., & Jenekhe, S. A. (1991). Site-specific reversible scission of hydrogen bonds in polymers. An investigation of polyamides and their Lewis acid–base complexes by infrared spectroscopy. Macromolecules, 24, 3142–3146.CrossRefGoogle Scholar
  43. Sagoo, S., Board, R., & Roller, S. (2002). Chitosan inhibits growth of spoilage micro-organisms in chilled pork products. Food Microbiology, 19, 175–182.CrossRefGoogle Scholar
  44. Senguptaa, R., Tikku, V. K., Somani, A. K., Chaki, T. K., & Bhowmick, A. K. (2005). Electron beam irradiated polyamide-6,6 films—I: characterization by wide angle X-ray scattering and infrared spectroscopy. Radiation Physics and Chemistry, 72(5), 625–633.CrossRefGoogle Scholar
  45. Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology, 10(2), 37–51.CrossRefGoogle Scholar
  46. Shigemasa, Y., Matsuura, H., Sashiwa, H., & Saimoto, H. (1996). Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. International Journal of Biological Macromolecules, 18, 237–242.CrossRefGoogle Scholar
  47. Skrovanek, D. J., Howe, S. E., Painter, P. C., & Coleman, M. M. (1985). Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide. Macromolecules, 18, 1676–1683.CrossRefGoogle Scholar
  48. Soultos, N., Tzikas, Z., Abrahim, A., Georgantelis, D., & Ambrosiadis, I. (2008). Chitosan effects on quality properties of Greek style fresh pork sausages. Meat Science, 80, 1150–1156.CrossRefGoogle Scholar
  49. Vårum, K. M., Anthonsen, M. W., Grasdalen, H., & Smidsrød, O. (1991). Detemination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitin (chitosans) by high-field NMR spectroscopy. Carbohydrate Research, 211, 17–23.CrossRefGoogle Scholar
  50. Wu, X., Qui, J., Liu, P., & Sakai, E. (2013). Preparation and characterization of polyamide composites with modified graphite powders. Journal of Polymer Research, 15, 284.Google Scholar
  51. Xu, Y. X., Kim, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan-starch composite film: preparation and characterization. Industrial Crops and Products, 21, 185–192.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. A. Lago
    • 1
  • R. Sendón
    • 1
  • A. Rodríguez-Bernaldo de Quirós
    • 1
  • A. Sanches-Silva
    • 2
  • H. S. Costa
    • 2
  • D. I. Sánchez-Machado
    • 3
  • H. Soto Valdez
    • 4
  • I. Angulo
    • 5
  • G. P. Aurrekoetxea
    • 5
  • E. Torrieri
    • 6
    • 7
  • J. López-Cervantes
    • 3
  • P. Paseiro
    • 1
  1. 1.Department of Analytical Chemistry, Nutrition and Food Science, Faculty of PharmacyUniversity of Santiago de CompostelaCoruñaSpain
  2. 2.Department of Food and NutritionNational Institute of Health Dr. Ricardo Jorge, I.P.LisbonPortugal
  3. 3.Departamento de Biotecnología y Ciencias alimentariasInstituto Tecnológico de SonoraCd. ObregónMéxico
  4. 4.Centro de Investigación en Alimentación y Desarrollo, A.C., CTAOVHermosilloMéxico
  5. 5.GaikerZamudioSpain
  6. 6.Department of Agricultural-University of Naples Federico IIPorticiItaly
  7. 7.CAISIAL-Centre of Food Innovation and Development in the Food Industry University of Naples Federico IIPorticiItaly

Personalised recommendations