Advertisement

Food and Bioprocess Technology

, Volume 7, Issue 9, pp 2732–2741 | Cite as

Early Postmortem Prediction of Meat Quality Traits of Porcine Semimembranosus Muscles Using a Portable Raman System

  • Rico Scheier
  • Aneka Bauer
  • Heinar Schmidt
Original Paper

Abstract

Modern abattoirs are lacking objective, fast, and noninvasive methods to measure or predict important meat quality traits such as pH, color, drip loss, or shear force early postmortem. In this work, a mobile Raman system was used to perform measurements under real-life conditions in the cooling room of an abattoir using pig's semimembranosus muscles (N = 96), 60–120 min after exsanguination. The traits pH45, pH24, CIE L*a*b*, drip loss, and shear force after 24 and 72 h were measured as reference and correlated with the Raman spectra using partial least squares regression. Strong correlations of the Raman spectra were obtained for pH45 (R 2 cv = 0.65, RMSECV = 0.17 pH units), pH24 (R 2 cv = 0.68, RMSECV = 0.09 pH units), L*-value (R 2 cv = 0.64, RMSECV = 1.9), b*-value (R 2 cv = 0.73, RMSECV = 0.6), drip loss (R 2 cv = 0.73, RMSECV = 1.0 %), and shear force after 72 h (R 2 cv = 0.7, RMSECV = 4 N). On the other hand, shear force after 24 h and a*-value showed only weak correlations (R 2 cv = 0.22, RMSECV = 7.8 N and R 2 cv = 0.36, RMSECV = 1.3). The predictions can be traced back to differences in the early postmortem metabolic conditions as indicated by Raman signals of phosphocreatine, creatine, adenosine triphosphate, inosine monophosphate, glycogen, lactate, phosphorylated metabolites, and inorganic phosphate. This study demonstrates the potential of Raman spectroscopy for the early postmortem prediction of six pork quality traits which can be useful for the discrimination of meat qualities and sorting in the production chain.

Keywords

pH Drip loss Color Shear force Noninvasive In situ 

Notes

Acknowledgments

We want to thank Dr. Anja Petzet, Manfred Spindler, Sabine Wiedel, Anneliese Bittermann, and Sybille Nordhausen for their skilled help with reference measurements and Thomas Kador for his assistance with Raman measurements. The authors also thank the technicians of the workshop of the University of Bayreuth, especially Heinz Krejtschi for the realization of the portable Raman system. This work was financially supported by the German Research Foundation DFG (Deutsche Forschungsgemeinschaft) and the German Federation of Industrial Research Associations AiF (Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke” e.V.) in the framework of the cluster project “Minimal Processing” of the Research Association of the German Food Industry (FEI). The Research Centre of Food Quality is financed by the European Regional Development Fund (ERDF) which is gratefully acknowledged.

Disclaimers

None

References

  1. Adzitey, F., & Nurul, H. (2011). PSE and DFD meats: causes and measured to reduce these incidences – a mini review. International Food Research Journal, 18, 11–20.Google Scholar
  2. Beattie, J. R., Bell, S. J., Farmer, L. J., Moss, B. W., & Patterson, D. (2004). Preliminary investigation of the application of Raman spectroscopy to the prediction of the sensory quality of beef silverside. Meat Science, 66(4), 903–913.CrossRefGoogle Scholar
  3. Beattie, J. R., Bell, S. E., Borggaard, C., & Moss, B. W. (2008). Preliminary investigations on the effects of ageing and cooking on the Raman spectra of porcine longissimus dorsi. Meat Science, 80(4), 1205–1211.CrossRefGoogle Scholar
  4. Bee, G., Anderson, A. L., Lonergan, S. M., & Huff-Lonergan, E. (2007). Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork. Meat Science, 76, 359–365.CrossRefGoogle Scholar
  5. Bendall, J., & Swatland, H. (1988). A review of the relationships of pH with physical aspects of pork quality. Meat Science, 24, 85–126.CrossRefGoogle Scholar
  6. Brewer, M. S., Novakofski, J., & Freise, K. (2006). Instrumental evaluation of pH effects on ability of pork chops to bloom. Meat Science, 72(4), 596–602.CrossRefGoogle Scholar
  7. Brondum, J., Munck, L., Henckel, P., Karlsson, A., Tornberg, E., & Engelsen, S. B. (2000). Prediction of water-holding capacity and composition of porcine meat by comparative spectroscopy. Meat Science, 55(2), 177–185.CrossRefGoogle Scholar
  8. Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78, 103–112.CrossRefGoogle Scholar
  9. Christensen, L. B. (2003). Drip loss sampling in porcine m. longissimus dorsi. Meat Science, 63(4), 469–477.CrossRefGoogle Scholar
  10. Damez, J.-L., & Clerjon, S. (2008). Meat quality assessment using biophysical methods related to meat structure. Meat Science, 80(1), 132–149.CrossRefGoogle Scholar
  11. Duan, Y., Huang, L., Xie, J., Yang, K., Yuan, F., Bruce, H. L., et al. (2013). Effect of temperature and pH on postmortem color development of porcine M. longissimus dorsi and M. semimembranosus. Journal of the Sciences of Food and Agriculture, 93(5), 1206–1210.CrossRefGoogle Scholar
  12. ElMasry, G., Sun, D.-W., & Allen, P. (2011). Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International, 44(9), 2624–2633.CrossRefGoogle Scholar
  13. FAO (2012) Sources of meat. Rome, Italy. Available at: http://www.fao.org/ag/againfo/themes/en/meat/backgr_sources.html. Accessed 9 August 2013.
  14. Feldhusen, F. (1994). Einflüsse auf die postmortale Farbveränderung der Oberfläche von Schweinemuskulatur. Fleischwirtschaft, 74(9), 989–991.Google Scholar
  15. Galloway, C. M., Le Ru, E. C., & Etchegoin, P. G. (2009). An iterative algorithm for background removal in spectroscopy by wavelet transforms. Applied Spectroscopy, 63(12), 1370–1376.CrossRefGoogle Scholar
  16. Henckel, P., Karlsson, A., Jensen, M. T., Oksbjerg, N., & Petersen, J. S. (2001). Metabolic conditions in porcine longissimus muscle immediately pre-slaughter and its influence on peri- and post mortem energy metabolism. Meat Science, 62(2), 145–155.CrossRefGoogle Scholar
  17. Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447–457.CrossRefGoogle Scholar
  18. Honikel, K. O., & Fischer, C. (1977). A rapid method for the detection of PSE and DFD porcine muscles. Journal of Food Science, 42(6), 1633–1636.CrossRefGoogle Scholar
  19. Hoving-Bolink, A. H., Vedder, H. W., Merks, J. W. M., de Klein, W. J. H., Reimert, H. G. M., Frankhuizen, R., et al. (2005). Perspective of NIRS measurements early post mortem for prediction of pork quality. Meat Science, 69(3), 417–423.CrossRefGoogle Scholar
  20. Huff-Lonergan, E., & Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Science, 71, 194–204.CrossRefGoogle Scholar
  21. Huff-Lonergan, E., & Lonergan, S. M. (2007). New frontiers in understanding drip loss in pork: recent insights on the role of postmortem muscle biochemistry. Journal of Animal Breeding and Genetics, 124(S1), 19–26.CrossRefGoogle Scholar
  22. Huff-Lonergan, E., Zhang, W., & Lonergan, S. M. (2010). Biochemistry of postmortem muscle: lessons on mechanisms of meat tenderization. Meat Science, 86(1), 184–195.CrossRefGoogle Scholar
  23. Immonen, K., & Puolanne, E. (2000). Variation of residual glycogen-glucose concentration at ultimate pH values below 5.75. Meat Science, 55(3), 279–283.CrossRefGoogle Scholar
  24. Joo, S. T., Kauffman, R., Kim, B. C., & Kim, C. J. (1995). The relationship between color and water-holding capacity in postrigor porcine longissimus muscle. Journal of Muscle Foods, 6, 211–226.CrossRefGoogle Scholar
  25. Joo, S. T., Kauffmann, R. G., Kim, B. C., & Park, G. B. (1999). The relationship of sarcoplasmic and myofibrillar protein solubility to colour and water-holding capacity in porcine longissimus muscle. Meat Science, 52, 291–297.CrossRefGoogle Scholar
  26. Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012). Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Analytica Chimica Acta, 714, 57–67.CrossRefGoogle Scholar
  27. Kauffman, R., Sybesma, W., Smulders, F., Eikelenboom, G., Engel, B., van Laack, R., et al. (1993). The effectiveness of examining early post-mortem musculature to predict ultimate pork quality. Meat Science, 34(3), 283–300.CrossRefGoogle Scholar
  28. Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules. Boston: Academic.Google Scholar
  29. Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71(1), 100–121.CrossRefGoogle Scholar
  30. Melody, J. L., Lonergan, S. M., Rowe, L. J., Huiatt, T. W., Mayes, M. S., & Huff-Lonergan, E. (2004). Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. Journal of Animal Science, 82, 1195–1205.Google Scholar
  31. Miri, A., Talmant, A., Renou, J. P., & Monin, G. (1992). 31P NMR study of post mortem changes in pig muscle. Meat Science, 31(2), 165–173.CrossRefGoogle Scholar
  32. Monin, G., & Sellier, P. (1985). Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: the case of the Hampshire breed. Meat Science, 13, 49–63.CrossRefGoogle Scholar
  33. Osborne, S., Jordan, R., & Kunnemeyer, R. (1997). Methods of wavelength selection for partial least squares. Analyst, 122, 1531–1537.CrossRefGoogle Scholar
  34. Pedersen, D. K., Morel, S., Andersen, H. J., & Engelsen, S. B. (2003). Early prediction of water-holding capacity in meat by multivariate vibrational spectroscopy. Meat Science, 65, 581–592.CrossRefGoogle Scholar
  35. Petzet, A., Scheier, R., Octoviani, A., Bauer, A., Hammon, A., Diepolder, H., et al. (2013). Entwicklung von Analysemethoden zur Etablierung einer online-fähigen Beurteilung der Fleischqualität. Fleischwirtschaft, 93(5), 84–87.Google Scholar
  36. Pézolet, M., Pigeon-Gosselin, M., & Caillé, J.-P. (1978). Laser Raman investigations of intact single muscle fibers. Protein conformations. Biochimica et Biophysica Acta, 533, 263–269.CrossRefGoogle Scholar
  37. Pézolet, M., Pigeon, M., Ménard, D., & Caillé, J.-P. (1988). Raman spectroscopy of cytoplasmic muscle fiber proteins. Orientational order. Biophysical Journal, 53(3), 319–325.CrossRefGoogle Scholar
  38. Qiao, J., Wang, N., Ngadi, M. O., Gunenc, A., Monroy, M., Gariépy, C., et al. (2006). Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat Science, 76(1), 1–8.CrossRefGoogle Scholar
  39. Rimai, L., Cole, T., Parsons, J. L., Hickmott, J. T., Jr., & Carew, E. B. (1969). Studies of Raman spectra of water solutions of adenosine Tri-, Di-, and monophosphate and some related compounds. Biophysical Journal, 9(3), 320–329.CrossRefGoogle Scholar
  40. Schäfer, A., Rosenvold, K., Purslow, P. P., Andersen, H. J., & Henckel, P. (2002). Physiological and structural events post mortem of importance for drip loss in pork. Meat Science, 61, 355–366.CrossRefGoogle Scholar
  41. Scheier, R., & Schmidt, H. (2013). Measurement of the pH value in pork meat early postmortem by Raman spectroscopy. Applied Physics B, 111, 289–297.CrossRefGoogle Scholar
  42. Scheier, R., Köhler, J., & Schmidt, H. (2014). Identification of the early postmortem metabolic state of porcine M. semimembranosus using Raman spectroscopy. Vibrational Spectroscopy 70, 12–17.Google Scholar
  43. Schmidt, H., Sowoidnich, K., & Kronfeldt, H.-D. (2010). A prototype hand-held Raman sensor for the in situ detection of meat quality. Applied Spectroscopy, 64(8), 888–894.CrossRefGoogle Scholar
  44. Schmidt, H., Scheier, R., & Hopkins, D. (2013). Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss. Meat Science, 93(1), 138–143.CrossRefGoogle Scholar
  45. Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (1999). Tenderness classification of beef: Design and analysis of a system to measure beef longissimus shear force commercial processing conditions. Journal of Animal Science, 77, 1474–1481.Google Scholar
  46. Sumpf, B., Schmidt, H., Maiwald, M., Müller, A., Erbert, G., Kronfeldt, H.-D. & Tränkle, G. (2009). Microsystem technology based diode lasers and Raman sensors for in situ food quality control. In: SPIE Proceedings Vol. 7315, Sensing for Agriculture and Food Quality and Safety, 7-12 February 2009, Lake Buena Vista, Florida, USA.Google Scholar
  47. Takahashi, K. (1996). Structural weakening of skeletal muscle tissue during post-mortem ageing of meat: the non-enzymatic mechanism of meat tenderization. Meat Science, 43(S1), 67–80.CrossRefGoogle Scholar
  48. Toldrá, F., & Flores, M. (2000). The use of muscle enzymes as predictors of pork meat quality. Food Chemistry, 69, 387–395.CrossRefGoogle Scholar
  49. Tornberg, E. (1996). Biophysical aspects of meat tenderness. Meat Science, 43(S1), 175–191.CrossRefGoogle Scholar
  50. van Laack, R., Kauffman, R., Sybesma, W., Smulders, F., Eikelenboom, G., & Pinheiro, J. (1994). Is colour brightness (L-value) a reliable indicator of water-holding capacity in porcine muscle. Meat Science, 38(2), 193–201.CrossRefGoogle Scholar
  51. Warner, R., Kauffman, R., & Greaser, M. (1997). Muscle protein changes post mortem in relation to pork quality traits. Meat Science, 45, 339–352.CrossRefGoogle Scholar
  52. Warriss, P. D. (1982). The relationship between pH45 and drip in pig muscle. Journal of Food Technology, 17, 573–578.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Research Centre of Food QualityUniversity BayreuthKulmbachGermany
  2. 2.Department of Safety and Quality of MeatMax Rubner InstituteKulmbachGermany

Personalised recommendations