Food and Bioprocess Technology

, Volume 7, Issue 9, pp 2492–2499 | Cite as

Spray-Drying of Probiotic Cashew Apple Juice

  • Ana Lúcia Fernandes Pereira
  • Francisca Diva Lima Almeida
  • Micael Andrade Lima
  • José Maria Correia da Costa
  • Sueli Rodrigues
Original Paper


Data on spray-drying of fruit juices containing probiotic bacteria are scarce. The main challenge is to avoid the viability losses of the microorganism during drying and storage. In the presented study, the dehydration by spray-drying of cashew apple juice containing Lactobacillus casei NRRL B-442, and the influence of the storage temperature (25 and 4 °C) on the viability of L. casei NRRL B-442 and on the physical properties of the powder during 35 days of storage were evaluated. Probiotic cashew apple juice was dehydrated according to the following conditions: inlet temperature of the drying air (120 °C), feed flow rate of juice (0.3 L/h), hot air flow (3.0 m3/min), and pressurized air flow (30 L/min). The outlet temperature was 75 °C. The carriers used were 20 % (w/v) maltodextrin or 10 % (w/v) maltodextrin + 10 % (w/v) gum arabic. Microbial survival rates higher than 90 % were obtained for the powder stored at 4 °C for 35 days (both carriers) and higher than 70 % up to 21 days for the powder obtained using only maltodextrin at 25 °C. Higher yields were obtained only by maltodextrin which was used as carrier (72 %) compared to the yield obtained when the mixture of maltodextrin and gum arabic was applied (60 %). The water activity was kept low (Aw < 0.30) during the storage, and the characteristic color of the product was maintained.


Spray-drying Maltodextrin Gum arabic Stability Viability 



The authors thank CNPq for the financial support through the National Institute of Science and Technology of Tropical Fruit, CAPES for the fellowships, and ARS Culture Collection for the L. casei strain.


  1. Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science and Technology, 18, 240–251.CrossRefGoogle Scholar
  2. Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15, 399–409.CrossRefGoogle Scholar
  3. Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & Villarán, M. D. C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142, 185–189.CrossRefGoogle Scholar
  4. Chavez, B. E., & Ledeboer, A. M. (2007). Drying of probiotics: optimization of formulation and process to enhance storage survival. Drying Technology, 25, 1193–1201.CrossRefGoogle Scholar
  5. Chegini, G. R., & Ghobadian, B. (2005). Effect of spray drying conditions on physical properties of orange juice powder. Drying Technology, 23, 657–668.CrossRefGoogle Scholar
  6. Comunian, T. A., Monterrey-Quintero, E. S., Thomazini, M., Balieiro, J. C. C., Piccone, P., Pittia, P., et al. (2011). Assessment of production efficiency, physicochemical properties and storage stability of spray-dried chlorophyllide, a natural food colourant, using gum arabic, maltodextrin and soy protein isolate-based carrier systems. International Journal of Food Science and Technology, 46, 1259–1265.CrossRefGoogle Scholar
  7. Desmond, C., Stanton, C., Fitzgerald, G. F., Collins, K., & Ross, R. P. (2002). Environmental adaptation of probiotic Lactobacilli towards improvement of performance during spray drying. International Dairy Journal, 12, 183–190.CrossRefGoogle Scholar
  8. FAO/WHO. (2003). Standard for fermented milks. Codex standard 243 (pp. 1–8). FAO/WHO: Rome.Google Scholar
  9. Foerst, P., Kulozik, U., Schmitt, M., Bauer, S., & Santivarangkna, C. (2012). Storage stability of vacuum-dried probiotic bacterium Lactobacillus paracasei F19. Food and Bioproducts Processing, 90, 295–300.CrossRefGoogle Scholar
  10. Garcha, S., Kaurani, L., & Production of non dairy probiotic foods. (2011). Asian Journal of Microbiology. Biotechnology and Environmental Sciences, 13, 565–568.Google Scholar
  11. Goula, A. M., & Adamopoulos, K. G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Science and Emerging Technologies, 11, 342–351.CrossRefGoogle Scholar
  12. Kearney, N., Meng, X. C., Stanton, C., Kelly, J., Fitzgerald, G. F., & Ross, R. P. (2009). Development of a spray dried probiotic yoghurt containing Lactobacillus paracasei NFBC 338. International Dairy Journal, 19, 684–689.CrossRefGoogle Scholar
  13. Kurtmann, L., Carlsen, C. U., Risbo, J., & Skibsted, L. H. (2009). Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiology, 58, 175–180.CrossRefGoogle Scholar
  14. Lian, W. C., Hsiao, H. C., & Chou, C. C. (2002). Survival of bifidobacteria after spray-drying. International Journal of Food Microbiology, 74, 79–86.CrossRefGoogle Scholar
  15. Mestry, A. P., Mujumdar, A. S., & Thorat, B. N. (2011). Optimization of spray drying of an innovative functional food: fermented mixed juice of carrot and watermelon. Drying Technology, 29, 1121–1131.CrossRefGoogle Scholar
  16. Nadeem, H. S., Torun, M., & Ozdemir, F. (2011). Spray drying of the mountain tea (Sideritis stricta) water extract by using different hydrocolloid carriers. LWT - Food Science and Technology, 44, 1626–1635.CrossRefGoogle Scholar
  17. Peighambardoust, S. H., Golshan Tafti, A. E., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: a review. Trends in Food Science & Technology, 22, 215–224.CrossRefGoogle Scholar
  18. Pereira, A. L. F., Maciel, T. C., & Rodrigues, S. (2011). Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 44, 1276–1283.CrossRefGoogle Scholar
  19. Pereira, A. L. F., Almeida, F. D. L., Jesus, A. L. T., & Rodrigues, S. (2013). Storage stability of probiotic beverage from cashew apple juice. Food Bioprocess Technology, 6, 3155–3165.CrossRefGoogle Scholar
  20. Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing, 46, 386–392.CrossRefGoogle Scholar
  21. Reddy, K. B. P. K., Madhu, A. N., & Prapulla, S. G. (2009). Comparative studies and evaluation of functional properties of spray-dried lactic acid bacteria. International Journal of Dairy Technology, 62, 240–248.CrossRefGoogle Scholar
  22. Schutyser, M. A. I., Perdana, J., & Boom, R. M. (2012). Single droplet drying for optimal spray drying of enzymes and probiotics. Trends in Food Science & Technology, 27, 73–82.CrossRefGoogle Scholar
  23. Semyonov, D., Ramon, O., & Shimoni, E. (2011). Using ultrasonic vacuum spray dryer to produce highly viable dry probiotics. LWT - Food Science and Technology, 44, 1844–1852.CrossRefGoogle Scholar
  24. Sheehan, V. M., Ross, P., & Fitzgerald, G. F. (2007). Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science & Emerging Technologies, 8, 279–284.CrossRefGoogle Scholar
  25. Shrestha, A. K., Ua-Arak, T., Adhikari, B. P., Howes, T., & Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). International Journal of Food Properties, 10, 661–673.CrossRefGoogle Scholar
  26. Silva, J., Freixo, R., Gibbs, P., & Teixeira, P. (2011). Spray-drying for the production of dried cultures. International Journal of Dairy Technology, 64, 321–335.CrossRefGoogle Scholar
  27. Truong, V., Bhandari, B. R., & Howes, T. (2005). Optimization of concurrent spray drying process for sugar rich foods: Part II—optimization of spray drying process based on glass transition. Journal of Food Engineering, 71, 66–72.CrossRefGoogle Scholar
  28. Vinderola, C. G., & Reinheimer, J. A. (2000). Enumeration of Lactobacillus casei in the presence of L. acidophilus, bifidobacteria and lactic starter bacteria in fermented dairy products. International Dairy Journal, 10, 271–275.CrossRefGoogle Scholar
  29. Wirjantoro, T. I., & Phianmongkhol, A. (2009). The viability of lactic acid bacteria and Bifidobacterium bifidum in yoghurt powder during storage. Journal of Natural Sciences, 8, 95–104.Google Scholar
  30. Yu, C., Wang, W., Yao, H., & Lius, H. (2007). Preparation of phospholipids microcapsule by spray drying. Drying Technology, 25, 695–702.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ana Lúcia Fernandes Pereira
    • 1
  • Francisca Diva Lima Almeida
    • 1
  • Micael Andrade Lima
    • 1
  • José Maria Correia da Costa
    • 1
  • Sueli Rodrigues
    • 1
  1. 1.Departamento de Tecnologia de AlimentosUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations