Food and Bioprocess Technology

, Volume 7, Issue 2, pp 324–337 | Cite as

An Overview of the Recent Developments on Fructooligosaccharide Production and Applications

  • Ana Luísa Dominguez
  • Lígia Raquel Rodrigues
  • Nelson Manuel Lima
  • José António Teixeira
Review

Abstract

Over the past years, many researchers have suggested that deficiencies in the diet can lead to disease states and that some diseases can be avoided through an adequate intake of relevant dietary components. Recently, a great interest in dietary modulation of the human gut has been registered. Prebiotics, such as fructooligosaccharides (FOS), play a key role in the improvement of gut microbiota balance and in individual health. FOS are generally used as components of functional foods, are generally regarded as safe (generally recognized as safe status—from the Food and Drug Administration, USA), and worth about 150€ per kilogram. Due to their nutrition- and health-relevant properties, such as moderate sweetness, low carcinogenicity, low calorimetric value, and low glycemic index, FOS have been increasingly used by the food industry. Conventionally, FOS are produced through a two-stage process that requires an enzyme production and purification step in order to proceed with the chemical reaction itself. Several studies have been conducted on the production of FOS, aiming its optimization toward the development of more efficient production processes and their potential as food ingredients. The improvement of FOS yield and productivity can be achieved by the use of different fermentative methods and different microbial sources of FOS-producing enzymes and the optimization of nutritional and culture parameter; therefore, this review focuses on the latest progresses in FOS research such as its production, functional properties, and market data.

Keywords

Fructooligosaccharides Prebiotics Transfructosylation Production yield Fructosyltransferase Fructofuranosidase 

References

  1. Antošová, M., Polakovič, M., Slovinská, M., Madlová, A., Illeová, V., & Báleš, V. (2002). Effect of sucrose concentration and cultivation time on batch production of fructosyltransferase by Aureobasidium pullulans CCY 27-1-1194. Chemical Papers, 56, 394–399.Google Scholar
  2. Antošová, M., Illeová, V., Vandáková, M., Družkovská, A., & Polakovič, M. (2008). Chromatographic separation and kinetic properties of fructosyltransferase from Aureobasidium pullulans. Journal of Biotechnology, 135, 58–63.Google Scholar
  3. Baba, S., Ohta, A., Ohtsuki, M., Takizawa, T., Adachi, T., & Hara, H. (1996). Fructooligosaccharides stimulate the absorption of magnesium from the hindgut in rats. Nutrition Research, 16, 657–666.Google Scholar
  4. Balasubramaniem, A. K., Nagarajan, K. V., & Paramasamy, G. (2001). Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochemistry, 36, 1241–1247.Google Scholar
  5. Bekers, M., Laukevics, J., Upite, D., Kaminska, E., Vigants, A., Viesturs, U., et al. (2002). Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochemistry, 38, 701–706.Google Scholar
  6. Belghith, K. S., Dahecha, I., Belghith, H., & Mejdouba, H. (2012). Microbial production of levansucrase for synthesis of fructooligosaccharides and levan. International Journal of Biological Macromolecules, 50, 451–458.Google Scholar
  7. Bennett, N., Greco, D. S., Peterson, M. E., Kirk, C., Mathes, M., & Fettman, M. J. (2006). Comparison of a low carbohydrate-low fiber diet and a moderate carbohydrate high fiber diet in the management of feline diabetes mellitus. Journal of Feline Medicine & Surgery, 8, 73–84.Google Scholar
  8. Brenda—The Comprehensive Enzyme Information System. (2005). Cologne University BioInformatics Center, Germany. Retrieved 3 May 2005 from http://www.brenda.uni-koeln.de/.
  9. Brighenti, F., Benini, L., Del Rio, D., Casiraghi, C., Pellegrini, N., Scazzina, F., et al. (2006). Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. American Journal of Clinical Nutrition, 83, 817–822.Google Scholar
  10. Bugaut, M., & Bentéjac, M. (1993). Biological effects of short-chain fatty acids in nonruminant mammals. Annual Review of Nutrition, 13, 217–241.Google Scholar
  11. Burkitt, D. P. (1969). Related disease—related cause? The Lancet, 2, 1229–1231.Google Scholar
  12. Chaudhri, O. B., Salem, V., Murphy, K. G., & Bloom, S. R. (2008). Gastrointestinal satiety signals. Annual Review of Physiology, 70, 239–255.Google Scholar
  13. Chávez, F. P., Rodriguez, L., Díaz, J., Delgado, J. M., & Cremata, J. A. (1997). Purification and characterization of an invertase from Candida utilis: comparison with natural and recombinant yeast invertases. Journal of Biotechnology, 53, 67–74.Google Scholar
  14. Chen, W. C. (1995). Production of β-fructofuranosidase by Aspergillus japonicus in batch and fed-batch cultures. Biotechnology Letters, 17, 1291–1294.Google Scholar
  15. Chen, W.-C., & Liu, C.-H. (1996). Production of β-fructofuranosidase by Aspergillus japonicus. Enzyme and Microbial Technology, 18, 153–160.Google Scholar
  16. Chen, H.-L., Lu, Y.-H., Lin, J., & Ko, L.-Y. (2000). Effects of fructooligosaccharide on bowel function and indicators of nutritional status in constipated elderly men. Nutrition Research, 20, 1725–1733.Google Scholar
  17. Chiang, C. J., Lee, W. C., Sheu, D. C., & Duan, K. J. (1997). Immobilization of β-fructofuranosidases from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides. Biotechnology Progress, 13, 577–582.Google Scholar
  18. Clydesdale, F. (2004). Functional foods: opportunities & challenges. Food Technology, 58, 35–40.Google Scholar
  19. Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of food grade oligosaccharides. Trends in Food Science & Technology, 7, 353–361.Google Scholar
  20. Crittenden, R. G., & Playne, M. J. (2002). Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis. Applied Microbiology and Biotechnology, 58, 297–302.Google Scholar
  21. De Preter, V., Hamer, H. M., Windey, K., & Verbeke, K. (2011). The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health? Molecular Nutrition & Food Research, 55, 46–57.Google Scholar
  22. Delgado, G. T. C., Tamashiro, W. M. S. C., Junior, M. R. M., Moreno, Y. M. F., & Pastore, G. M. (2011). The putative effects of prebiotics as immunomodulatory agents. Food Research International, 44, 3167–3173.Google Scholar
  23. Delzenne, N. M., & Kok, N. (2001). Effects of fructans-type prebiotics on lipid metabolism. The American Journal of Clinical Nutrition, 73(Suppl), 456S–458S.Google Scholar
  24. Delzenne, N. M., Daubioul, C., Neyrinck, A., Lasa, M., & Taper, H. S. (2002). Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. British Journal of Nutrition, 87(Suppl), S255–S259.Google Scholar
  25. Dhake, A. B., & Patil, M. B. (2007). Effect of substrate feeding on production of fructosyltransferase by Penicillium purpurogenum. Brazilian Journal of Microbiology, 38, 194–199.Google Scholar
  26. Dominguez, A., Nobre, C., Rodrigues, L. R., Peres, A. M., Torres, D., Rocha, I., et al. (2012). New improved method for fructooligosaccharides production by Aureobasidium pullulans. Carbohydrate Polymers, 89, 1174–1179.Google Scholar
  27. Druce, M. R., Small, C. J., & Bloom, S. R. (2004). Minireview: gut peptides regulating satiety. Endocrinology, 145, 2660–2665.Google Scholar
  28. Fiordaliso, M., Kok, N., Desager, J. P., Goethals, F., Deboyser, D., Roberfroid, M., et al. (1995). Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids, 30, 163–167.Google Scholar
  29. Fujishima, M., Sakai, H., Ueno, K., Takahashi, N., Onodera, S., Benkeblia, N., et al. (2005). Purification and characterization of a fructosyltransferase from onion bulbs and its key role in the synthesis of fructo-oligosaccharides in vivo. New Phytologist, 165, 513–524.Google Scholar
  30. Ganaie, M. A., Gupta, U. S., & Kango, N. (2013). Screening of biocatalysts for transformation of sucrose to fructooligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 97, 12–17.Google Scholar
  31. Ghazi, I., De Segura, A. G., Fernández-Arrojo, L., Alcalde, M., Yates, M., Rojas-Cervantes, M. L., et al. (2005). Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 35, 19–27.Google Scholar
  32. Ghazi, I., Fernández-Arrojo, L., Garcia-Arellano, H., Ferrer, M., Ballesteros, A., & Plou, F. J. (2007). Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. Journal of Biotechnology, 128, 204–211.Google Scholar
  33. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition, 125, 1401–1412.Google Scholar
  34. Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A., & Roberfroid, M. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17, 259–275.Google Scholar
  35. Glore, S. R., Van Treeck, D., Knehans, A. W., & Guild, M. (1994). Soluble fiber and serum lipids: a literature review. Journal of the American Dietetic Association, 94, 425–436.Google Scholar
  36. Gomes, A. J. P. (2009). Optimização da Produção de Frutooligossacáridos por Aspergillus. Unpublished master's thesis. University of Minho, Braga, Portugal.Google Scholar
  37. Goulas, A., Tzortzis, G., & Gibson, G. R. (2007). Development of a process for the production and purification of α- and β-galactooligosaccharides from Bifobacterium bifidum NCIMB 41171. International Dairy Journal, 17, 648–656.Google Scholar
  38. Gudiel-Urbano, M., & Goñi, I. (2002). Effect of fructooligosaccharides on nutritional parameters and mineral bioavailability in rats. Journal of the Science of Food and Agriculture, 82, 913–917.Google Scholar
  39. Hayashi, S., Nonoguchi, M., Takasaki, Y., Ueno, H., & Imada, K. (1992). Purification and properties of β-fructofuranosidase from Aureobasidium sp. ATCC 20524. Journal of Industrial Microbiology, 7, 251–256.Google Scholar
  40. Hernández, O., Ruiz-Matute, A. I., Olano, A., Moreno, F. J., & Sanz, M. L. (2009). Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. International Dairy Journal, 19, 531–536.Google Scholar
  41. Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64, 175–186.Google Scholar
  42. Hosono, A., Ozawa, A., Kato, R., Ohnishi, Y., Nakanishi, Y., Kimura, T., et al. (2003). Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer’s patch cells. Bioscience, Biotechnology, and Biochemistry, 67, 758–764.Google Scholar
  43. Howlett J (Ed.) (2008) Functional foods—from science to health and claims. ILSI Europe—Concise Monograph Series, Brussels, Belgium.Google Scholar
  44. Jackson, K. G., Taylor, G. R. L., Clohessy, A. M., & Williams, C. M. (1999). The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. British Journal of Nutrition, 82, 23–30.Google Scholar
  45. Jedrzejczak-Krzepkowska, M., Tkaczuk, K. L., & Bielecki, S. (2011). Biosynthesis, purification and characterization of β-fructofuranosidase from Bifidobacterium longum KN29.1. Process Biochemistry, 46, 1963–1972.Google Scholar
  46. Kim, Y. S., Tsa, O. D., Morita, A., & Bella, A. (1982). Effect of sodium butyrate and three human colorectal adenocarcinoma cell lines in culture. Falk Symposium, 31, 317–323.Google Scholar
  47. Koops, A. J., & Jonker, H. H. (1994). Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus “Columbia”: I.Fructan: fructan fructosyl transferase. Journal of Experimental Botany, 45, 1623–1631.Google Scholar
  48. Korzenik, J. R., & Podolsky, D. K. (2006). Evolving knowledge and therapy of inflammatory bowel disease. Nature Reviews Drug Discovery, 5, 197–209.Google Scholar
  49. Kunz, C., & Rudloff, S. (2006). Health promoting aspects of milk oligosaccharides. International Dairy Journal, 16, 1341–1346.Google Scholar
  50. L’Hocine, L., Wang, Z., Jiang, B., & Xu, S. (2000). Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology, 81, 73–84.Google Scholar
  51. Lateef, A., Oloke, J. K., & Prapulla, S. G. (2007). Purification and partial characterization of intracellular fructosyltransferase from a novel strain of Aureobasidium pullulans. Turkish Journal of Biology, 31, 147–154.Google Scholar
  52. Lee, W.-C., Chiang, C.-J., & Tsai, P.-Y. (1999). Kinetic modeling of fructo-oligosaccharide production catalyzed by immobilized β-fructofuranosidase. Industrial & Engineering Chemistry Research, 38, 2564–2570.Google Scholar
  53. Levrat, M. A., Favier, M. L., Moundras, C., Rémésy, C., Demigné, C., & Morand, C. (1994). Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. Journal of Nutrition, 124, 531–538.Google Scholar
  54. Lim, C. C., Ferguson, L. R., & Tannock, G. W. (2005a). Dietary fibres as “prebiotics”: implications for colorectal cancer. Molecular Nutrition & Food Research, 49, 609–619.Google Scholar
  55. Lim, J. S., Park, M. C., Lee, J. H., Park, S. W., & Kim, S. W. (2005b). Optimization of culture medium and conditions for Neo-fructooligosaccharides production by Penicillium citrinum. European Food Research and Technology, 221, 639–644.Google Scholar
  56. Lin, T.-J., & Lee, Y.-C. (2008). High-content fructooligosaccharides production using two immobilized microorganisms in an internal-loop airlift bioreactor. Journal of the Chinese Institute of Chemical Engineers, 39, 211–217.Google Scholar
  57. Macfarlane, G. T., Steed, H., & Macfarlane, S. (2008). Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology, 104, 305–344.Google Scholar
  58. Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Stefuca, V., & Báles, V. (1999). Screening of microorganisms for transfructosylating activity and optimization of biotransformation of sucrose to fructooligosaccharides. Chemical Papers, 53, 366–369.Google Scholar
  59. Madlová, A., Antošová, M., Polakovič, M., & Báles, V. (2000). Thermal stability of fructosyltransferase from Aureobasidium pullulans. Chemical Papers, 54, 339–344.Google Scholar
  60. Maiorano, A. E., Piccoli, R. M., Silva, E. S., & Rodrigues, M. F. A. (2008). Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnology Letters, 30, 1867–1877.Google Scholar
  61. Manning, T. S., & Gibson, G. R. (2004). Prebiotics. Best Practice & Research Clinical Gastroenterology, 18, 287–298.Google Scholar
  62. Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56, 181–188.Google Scholar
  63. Metz, B., & Kossen, N. W. F. (1977). Biotechnology review: the growth of the molds in the form of pellets, a literature. Biotechnology and Bioengineering, 19, 781–799.Google Scholar
  64. Mishra, S., & Mishra, H. N. (2013). Effect of synbiotic interaction of fructooligosaccharide and probiotics on the acidification profile, textural and rheological characteristics of fermented soy milk. Food and Bioprocess Technology, 6, 3166–3176.Google Scholar
  65. Munjal, U., Glei, M., Pool-Zobel, B. L., & Scharlau, D. (2009). Fermentation products of inulin-type fructans reduce proliferation and induce apoptosis in human colon tumour cells of different stages of carcinogenesis. British Journal of Nutrition, 27, 1–9.Google Scholar
  66. Mussatto, S. I., & Mancilha, I. M. (2007). Non-digestible oligosaccharides: a review. Carbohydrate Polymers, 68, 587–597.Google Scholar
  67. Mussatto, S. I., & Teixeira, J. A. (2010). Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochemical Engineering Journal, 53, 154–157.Google Scholar
  68. Mussatto, S. I., Aguilar, C. N., Rodrigues, L. R., & Teixeira, J. A. (2009). Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research, 344, 795–800.Google Scholar
  69. Mussatto, S. I., Prata, M. B., Rodrigues, L. R., & Teixeira, J. A. (2012). Production of fructooligosaccharides and β-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. European Food Research and Technology, 235, 13–22.Google Scholar
  70. Nemukula, A., Mutanda, T., Wilhelmi, B. S., & Whiteley, C. G. (2009). Response surface methodology: synthesis of short chain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus. Bioresource Technology, 100, 2040–2045.Google Scholar
  71. Nguyen, Q. D., Mattes, F., Hoschke, Á., Rezessy-Szabó, J., & Bhat, M. K. (1999). Production, purification and identification of fructooligosaccharides produced by β-fructofuranosidase from Aspergillus niger IMI 303386. Biotechnology Letters, 21, 183–186.Google Scholar
  72. Nguyen, Q. D., Rezessy-Szabó, J. M., Bhat, M. K., & Hoschke, Á. (2005). Purification and some properties of β-fructofuranosidase from Aspergillus niger IMI303386. Process Biochemistry, 40, 2461–2466.Google Scholar
  73. Nilsson, A. C., Ostman, E. M., Holst, J. J., & Bjorck, I. M. E. (2008). Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. The Journal of Nutrition, 138, 732–739.Google Scholar
  74. Nishizawa, K., Nakajima, M., & Nabetani, H. (2001). Kinetic study on transfructosylation by β-fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production. Food Science and Technology Research, 7, 39–44.Google Scholar
  75. Nobre, C., Teixeira, J.A., & Rodrigues, L.R. (2013). New trends and technological challenges in the industrial production and purification of fructo-oligosaccharides. Critical Reviews in Food Science and Nutrition. doi:10.1080/10408398.2012.697082.
  76. Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13, 81–84.Google Scholar
  77. Park, J.-P., Oh, T.-K., & Yun, J.-W. (2001). Purification and characterization of a novel transfructosylating enzyme from Bacillus macerans EG-6. Process Biochemistry, 37, 471–476.Google Scholar
  78. Pierre, F., Perrin, P., Champ, M., Bornet, F., Meflah, K., & Menanteau, J. (1997). Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Research, 57, 225–228.Google Scholar
  79. Piñeiro, M., Asp, N. G., Reid, G., Macfarlane, S., Morelli, L., Brunser, O., et al. (2008). FAO Technical meeting on prebiotics. Journal of Clinical Gastroenterology, 42(Suppl 3), S156–S159.Google Scholar
  80. Playne, M. J., & Crittenden, R. G. (2004). Prebiotics from lactose, sucrose, starch, and plant polysaccharides. In J.-R. Neeser & J. B. German (Eds.), Bioprocesses and biotechnology for functional foods and nutraceuticals (pp. 99–135). New York: Marcel Dekker.Google Scholar
  81. Prata, M. B., Mussatto, S. I., Rodrigues, L. R., & Teixeira, J. A. (2010). Fructooligosaccharide production by Penicillium expansum. Biotechnology Letters, 32, 837–840.Google Scholar
  82. Qiang, X., YongLie, C., & QianBing, W. (2009). Health benefit application of functional oligosaccharides. Carbohydrate Polymers, 77, 435–441.Google Scholar
  83. Raschka, L., & Daniel, H. (2005). Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone, 37, 728–735.Google Scholar
  84. Risso, F. V. A., Mazutti, M. A., Treichel, H., Costa, F., Maugeri, F., & Rodrigues, M. I. (2012). Comparison between systems for synthesis of fructooligosaccharides from sucrose using free inulinase from Kluyveromyces marxianus NRRL Y-7571. Food and Bioprocess Technology, 5, 331–337.Google Scholar
  85. Roberfroid, M. (1993). Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 33, 103–148.Google Scholar
  86. Roberfroid, M. B. (2000a). Defining functional foods. In G. Gibson & C. Williams (Eds.), Functional foods: trends and prospects (pp. 9–25). Cambridge: Woodhead Publishing.Google Scholar
  87. Roberfroid, M. B. (2000b). Prebiotics and probiotics: are they functional foods? The American Journal of Clinical Nutrition, 71(Suppl), 1682S–1687S.Google Scholar
  88. Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., et al. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(Suppl), S1–S63.Google Scholar
  89. Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M., & Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT—Food Science and Technology, 50, 1–16.Google Scholar
  90. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004a). Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry, 39, 753–758.Google Scholar
  91. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004b). Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Applied Microbiology and Biotechnology, 65, 530–537.Google Scholar
  92. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005a). Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochemistry, 40, 1085–1088.Google Scholar
  93. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005b). Maximization of fructooligosaccharide production by two stage continuous process and its scale up. Journal of Food Engineering, 68, 57–64.Google Scholar
  94. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005c). Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends in Food Science & Technology, 16, 442–457.Google Scholar
  95. Sanz, M. L., Polemis, N., Morales, V., Corzo, N., Drakoularakou, A., Gibson, G. R., et al. (2005). In vitro investigation into the potential prebiotic activity of honey oligosaccharides. Journal of Agricultural and Food Chemistry, 53, 2914–2921.Google Scholar
  96. Scheppach, W., & Weiler, F. (2004). The butyrate story: old wine in new bottles? Current Opinion in Clinical Nutrition Metabolic Care, 7, 563–567.Google Scholar
  97. Schley, P. D., & Field, J. C. (2002). The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, 87, 221–230.Google Scholar
  98. Sheu, D. C., Lio, P. J., Chen, S. T., Lin, C. T., & Duan, K. J. (2001). Production of fructooligosaccharides in high yield using a mixed enzyme system of β-fructofuranosidase and glucose oxidase. Biotechnology Letters, 23, 1499–1503.Google Scholar
  99. Sheu, D.-C., Duan, K.-J., Cheng, C.-Y., Bi, J.-L., & Chen, J.-Y. (2002). Continuous production of high-content fructooligosaccharides by a complex cell system. Biotechnology Progress, 18, 1282–1286.Google Scholar
  100. Shimizu, M., & Hachimura, S. (2011). Gut as a target for functional food. Trends in Food Science & Technology, 22, 646–650.Google Scholar
  101. Shin, H. T., Baig, S. Y., Lee, S. W., Suh, D. S., Kwon, S. T., Lim, Y. B., & Lee, J. H. (2004a). Production of fructo-oligosaccharides from molasses by Aureobasidium pullulans cells. Bioresource Technology, 93, 59–62.Google Scholar
  102. Shin, H. T., Park, K. M., Kang, K. H., Oh, D. J., Lee, S. W., Baig, S. Y., et al. (2004b). Novel method for cell immobilization and its application for production of oligosaccharides from sucrose. Letters in Applied Microbiology, 38, 176–179.Google Scholar
  103. Shiomi, N. (1982). Purification and characterisation of 1F-fructosyltransferase from the roots of asparagus (Asparagus officinalis L.). Carbohydrate Research, 99, 157–169.Google Scholar
  104. Simmering, R., & Blaut, M. (2001). Pro- and prebiotics—the tasty guardian angels? Applied Microbiology and Biotechnology, 55, 19–28.Google Scholar
  105. Singh, R. S., & Singh, R. P. (2010). Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technology and Biotechnology, 48, 435–450.Google Scholar
  106. Siró, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—a review. Appetite, 51, 456–467.Google Scholar
  107. Straathof, A. J. J., Kieboom, A. P. G., & Bekkum, H. (1986). Invertase-catalysed fructosyl transfer in concentrated solutions of sucrose. Carbohydrate Research, 146, 154–159.Google Scholar
  108. Szajewska, H. (2010). Probiotics and prebiotics in preterm infants: where are we? Where are we going? Early Human Development, 86, S81–S86.Google Scholar
  109. Tokunaga, T., Oku, T., & Hosoya, N. (1986). Influence of chronic intake of new sweetener fructooligosaccharide (Neosugar) on growth and gastrointestinal function of the rat. Journal of Nutritional Science and Vitaminology (Tokyo), 32, 111–121.Google Scholar
  110. van Hijum, S. A. F. T., van Geel-Schutten, G. H., Rahaoui, H., van der Maarel, M. J. E. C., & Dijkhuizen, L. (2002). Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Applied and Environmental Microbiology, 68, 4390–4398.Google Scholar
  111. Vandáková, M., Platková, Z., Antošová, M., Báleš, V., & Polakovič, M. (2004). Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chemical Papers, 58, 15–22.Google Scholar
  112. Voragen, A. G. J. (1998). Technological aspects of functional food-related carbohydrates. Trends in Food Science & Technology, 9, 328–335.Google Scholar
  113. Wallis, G. L. F., Hemming, F. W., & Peberdy, J. F. (1997). Secretion of two β-fructofuranosidases by Aspergillus niger growing in sucrose. Archives of Biochemistry and Biophysics, 345, 214–222.Google Scholar
  114. Wang, L.-M., & Zhou, H.-M. (2006). Isolation and identification of a novel A. japonicus JN19 producing β-fructofuranosidase and characterization of the enzyme. Journal of Food Biochemistry, 30, 641–658.Google Scholar
  115. Yamamoto, Y., Takahashi, Y., Kawano, M., Iizuka, M., Matsumoto, T., Saeki, S., et al. (1999). In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats. The Journal of Nutritional Biochemistry, 10, 13–18.Google Scholar
  116. Yoon, S. H., Mukerjea, R., & Robyt, J. F. (2003). Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydrate Research, 338, 1127–1132.Google Scholar
  117. Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2006). Multiple β-fructofuranosidases by Aureobasidium pullulans DSM2404 and their roles in fructooligosaccharide production. FEMS Microbiology Letters, 265, 159–163.Google Scholar
  118. Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2007). Purification and some properties of β-fructofuranosidase I formed by Aureobasidium pullulans DSM 2404. Journal of Bioscience and Bioengineering, 103, 491–493.Google Scholar
  119. Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2008). Production of fructooligosaccharides by crude enzyme preparations of β-fructofuranosidase from Aureobasidium pullulans. Biotechnology Letters, 30, 535–539.Google Scholar
  120. Yu Wang, M. A., Tao Zeng, M. D., Shu-e Wang, M. A., Wei Wang, M. A., Qian Wang, M. A., & Hong-Xia Yu, M. A. (2010). Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition, 26, 305–311.Google Scholar
  121. Yun, J. W. (1996). Fructooligosaccharides—occurrence, preparation, and application. Enzyme and Microbial Technology, 19, 107–117.Google Scholar
  122. Yun, J. W., & Song, S. K. (1993). The production of high-content fructo-oligosaccharides from sucrose by the mixed-enzyme system of fructosyltransferase and glucose oxidase. Biotechnology Letters, 15, 573–576.Google Scholar
  123. Yun, J. W., Kim, D. H., & Song, S. K. (1997). Enhanced production of fructosyltransferase and glucosyltransferase by substrate-feeding cultures of Aureobasidium pullulans. Journal of Fermentation and Bioengineering, 84, 261–263.Google Scholar
  124. Ziemer, C. J., & Gibson, G. R. (1998). An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. International Dairy Journal, 8, 473–479.Google Scholar
  125. Zuccaro, A., Götze, S., Kneip, S., Dersch, P., & Seibel, J. (2008). Tailor-made fructooligosaccharides by a combination of substrate and genetic engineering. ChemBioChem, 9, 143–149.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ana Luísa Dominguez
    • 1
  • Lígia Raquel Rodrigues
    • 1
    • 2
  • Nelson Manuel Lima
    • 1
  • José António Teixeira
    • 1
  1. 1.Centre of Biological Engineering, IBB—Institute for Biotechnology and BioengineeringUniversity of MinhoBragaPortugal
  2. 2.Biotempo—Consultoria em Biotecnologia, LdaGuimarãesPortugal

Personalised recommendations