Advertisement

Food and Bioprocess Technology

, Volume 7, Issue 2, pp 307–323 | Cite as

Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry

  • Dan Liu
  • Da-Wen Sun
  • Xin-An Zeng
Review

Abstract

During the past decade, hyperspectral imaging (HSI) has been rapidly developing and widely applied in the food industry by virtue of the use of chemometric techniques in which wavelength selection methods play an important role. This paper is a review of such variable selection methods and their limitations, describing the basic taxonomy of the methods and their respective advantages and disadvantages. Special attention is paid to recent developments in wavelength selection techniques for HSI in the field of food quality and safety evaluations. Typical and commonly used methods in HSI, such as partial least squares regression, stepwise regression and spectrum analysis, are described in detail. Some sophisticated methods, such as successive projections algorithm, uninformative variable elimination, simulated annealing, artificial neural network and genetic algorithm methods, are also discussed. Finally, new methods not currently used but that could have substantial impact on the field are presented. In short, this review provides an overview of wavelength selection methods in food-related areas and offers a thoughtful perspective on future potentials and challenges in the development of HSI systems.

Keywords

Wavelength selection Hyperspectral imaging Multispectral Food Chemometrics 

Notes

Acknowledgments

The authors are grateful to the Guangdong Province Government (China) for support through the program of “Leading Talent of Guangdong Province (Da-Wen Sun)”. This research was also supported by China Postdoctoral Science Foundation (2013M530366). Prof Don and Karen Barnes and Dr Rana Muhammad Aadil are gratefully acknowledged for kind assistance and revisions of English quality and styling of this paper.

References

  1. Ariana, D. P., & Lu, R. (2010). Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Computers and Electronics in Agriculture, 74(1), 137–144.Google Scholar
  2. Balabin, R. M., & Smirnov, S. V. (2011). Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data. Analytica Chimica Acta, 692(1–2), 63–72.Google Scholar
  3. Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012a). Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. Analytica Chimica Acta, 719, 30–42.Google Scholar
  4. Barbin, D. F., ElMasry, G., Sun, D.-W., Allen, P., & Noha, M. (2012b). Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innovative Food Science & Emerging Technologies, 17, 180–191.Google Scholar
  5. Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012c). Near-infrared hyperspectral imaging for grading and classification of pork. Meat Science, 90(1), 259–268.Google Scholar
  6. Barbin, D. F., ElMasry, G., Sun, D.-W., & Allen, P. (2013a). Non-destructive determination of chemical composition in intact and minced pork by near-infrared hyperspectral imaging. Food Chemistry, 138(2–3), 1162–1171.Google Scholar
  7. Barbin, D. F., Sun, D.-W., & Su, C. (2013b). NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen-thawed porcine longissimus dorsi muscles. Innovative Food Science & Emerging Technologies, 18, 226–236.Google Scholar
  8. Ben-Bassat, M. (1982). Pattern recognition and reduction of dimensionality. In: Krishnaiah P. and Kanal L. (eds.) Handbook of statistics II, Vol. 1. North-Holland, Amsterdam. pp. 773–791.Google Scholar
  9. Bhuvaneswari, K., Fields, P. G., White, N. D. G., Sarkar, A. K., Singh, C. B., & Jayas, D. S. (2011). Image analysis for detecting insect fragments in semolina. Journal of Stored Products Research, 47, 20–24.Google Scholar
  10. Burger, J., & Gowen, A. (2011). Data handling in hyperspectral image analysis. Chemometrics and Intelligent Laboratory Systems, 108, 13–22.Google Scholar
  11. Cai, W., Li, Y., & Shao, X. (2008). A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 90, 188–194.Google Scholar
  12. Centner, V., Massart, D. L., & De Noord, O. E. (1996). Elimination of uninformative variables for multivariate calibration. Analytical Chemistry, 68(21), 3851–3858.Google Scholar
  13. Centner, V. (2009). Multivariate approaches: UVE-PLS. Chemistry and Biochemistry Data Analysis, 21, 609–618.Google Scholar
  14. Chang, Y.-L. (2011). A simulated annealing feature extraction approach for hyperspectral images. Future Generation Computer Systems, 27(4), 419–426.Google Scholar
  15. Chao, K., Yang, C., Kim, M., & Chan, D. (2008). High throughput spectral imaging system for wholesomeness inspection of chicken. Applied Engineering in Agriculture, 24(4), 475–485.Google Scholar
  16. Chong, I. G., & Jun, C. H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1–2), 103–112.Google Scholar
  17. Cluff, K., Naganathan, G. K., Subbiah, J., Lu, R., Calkins, C. R., & Samal, A. (2008). Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region. Sensing and Instrumentation for Food Quality and Safety, 2(3), 189–196.Google Scholar
  18. Costa, C., D’Andrea, S., Russo, R., Antonucci, F., Pallottino, F., & Menesatti, P. (2011). Application of non-invasive techniques to differentiate sea bass (Dicentrarchus labrax, L. 1758) quality cultured under different conditions. Aquaculture International, 19(4), 765–778.Google Scholar
  19. Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1, 131–156.Google Scholar
  20. Du, C.-J., & Sun, D.-W. (2004). Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science & Technology, 15, 230–249.Google Scholar
  21. Du, C.-J., & Sun, D.-W. (2005a). Comparison of three methods for classification of pizza topping using different colour space transformations. Journal of Food Engineering, 68(3), 277–287. doi: 10.1016/j.jfoodeng.2004.05.044.Google Scholar
  22. Du, C.-J., & Sun, D.-W. (2005b). Pizza sauce spread classification using colour vision and support vector machines. Journal of Food Engineering, 66(2), 137–145. doi: 10.1016/j.jfoodeng.2004.03.011.Google Scholar
  23. Duda, R., Hart, P., & Stork, D. (2001). Pattern classification. New York: Wiley.Google Scholar
  24. ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008). Early detection of apple bruises on different background colors using hyperspectral imaging. LWT--Food Science and Technology, 41(2), 337–345.Google Scholar
  25. ElMasry, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52(1), 1–8.Google Scholar
  26. ElMasry, G., Sun, D.-W., & Allen, P. (2011). Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Research International, 44(9), 2624–2633.Google Scholar
  27. ElMasry, G., Sun, D.-W., & Allen, P. (2012). Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering, 110(1), 127–140.Google Scholar
  28. ElMasry, G., Sun, D.-W., & Allen, P. (2013). Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging. Journal of Food Engineering, 117(2), 235–246.Google Scholar
  29. Esbensen, K. H. (2002). Multivariate data analysis in practice (5th ed.). Oslo: CAMO Process.Google Scholar
  30. Fang, H., Zou, Q., He, Y., & Li, X. L. (2012). Detection of activity of POD in tomato leaves based on hyperspectral imaging technology. Spectroscopy and Spectral Analysis, 32(8), 2228–2233.Google Scholar
  31. Fang, J.P., Chang, Y.L., Ren, H., Lin, C.C., Liang, W.Y., & Fang, J.F. (2006). A simulated annealing band selection approach for hyperspectral imagery. Proceedings of SPIE 6378, doi:10.1117/12.685683.Google Scholar
  32. Feng, Y.-Z., ElMasry, G., Sun, D.-W., Scannell, A. G. M., Walsh, D., & Morcy, N. (2013). Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of Enterobacteriaceae on chicken fillets. Food Chemistry, 138(2–3), 1829–1836.Google Scholar
  33. Feng, Y.-Z., & Sun, D.-W. (2013a). Determination of total viable count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta, 105, 244–249.Google Scholar
  34. Feng, Y.-Z., & Sun, D.-W. (2013b). Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. Talanta, 109, 74–83.Google Scholar
  35. Galvão, R. K. H., Araújo, M. C. U., Fragoso, W. D., Silva, E. C., José, G. E., Soares, S. F. C., et al. (2008). A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm. Chemometrics and Intelligent Laboratory Systems, 92(1), 83–91.Google Scholar
  36. Geladi, P., & Dabakk, E. (1995). An overview of chemometrics applications in near infrared spectrometry. Journal of Near Infrared Spectroscopy, 3(1), 119–132.Google Scholar
  37. Ghosh, P. K., & Jayas, D. S. (2009). Use of spectroscopic data for automation in food processing Industry. Sensing and Instrumentation for Food Quality and Safety, 3, 3–11.Google Scholar
  38. Glorfeld, L. W. (1996). A methodology for simplification and interpretation of back propagation-based neural network models. Expert Systems with Applications, 10(1), 37–54.Google Scholar
  39. Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., et al. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.Google Scholar
  40. Gomez-Sanchis, J., Martin-Guerrero, J. D., Soria-Olivas, E., Martinez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques. Expert Systems with Applications, 39, 780–785.Google Scholar
  41. Gomez-Sanchis, J., Blasco, J., Soria-Olivas, E., Lorente, D., Escandell-Montero, P., Martinez-Martinez, J. M., et al. (2013). Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers. Postharvest Biology and Technology, 82, 76–86.Google Scholar
  42. Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.Google Scholar
  43. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.Google Scholar
  44. Hall, M. (1999). Correlation-based feature selection for machine learning. PhD Thesis., Department of Computer Science, Waikato University, New Zealand.Google Scholar
  45. Iqbal, A., Sun, D.-W., & Allen, P. (2013). Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system. Journal of Food Engineering, 117(1), 42–51.Google Scholar
  46. Jain, A. K., & Zongker, D. (1997). Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2), 153–158.Google Scholar
  47. Jackman, P., Sun, D.-W., Du, C.-J., Allen, P., Downey, G. (2008). Prediction of beef eating quality from colour, marbling and wavelet texture features. Meat Science, 80(4), 1273–1281. doi: 10.1016/j.meatsci.2008.06.001.Google Scholar
  48. Jackman, P., Sun, D.-W., Du, C.-J., Allen, P. (2009). Prediction of beef eating qualities from colour, marbling and wavelet surface texture features using homogenous carcass treatment. Pattern Recognition, 42(5), 751–763. doi: 10.1016/j.patcog.2008.09.009.Google Scholar
  49. Jiang, Y.L., Zhang, R.Y., Yu, J., Hu, W.C., & Yin, Z.T. (2011). Detection of infected Tephritidae citrus fruit based on hyperspectral imaging and two-band ratio algorithm. Advanced Materials Research, 311–313, 1501–1504.Google Scholar
  50. Jouan-Rimbaud, D., Massart, D. L., Leardi, R., & De Noord, O. E. (1995). Genetic algorithms as a tool for wavelength selection in multivariate calibration. Analytical Chemistry, 67(23), 4295–4301.Google Scholar
  51. Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012a). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovative Food Science & Emerging Technologies, 16, 218–226.Google Scholar
  52. Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012b). Prediction of some quality attributes of lamb meat using near infrared hyperspectral imaging and multivariate analysis. Analytica Chimica Acta, 714, 57–67.Google Scholar
  53. Kamruzzaman, M., Barbin, D., ElMasry, G., Sun, D.-W., & Allen, P. (2012c). Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat. Innovative Food Science & Emerging Technologies, 16, 316–325.Google Scholar
  54. Kamruzzaman, M., Sun, D.-W., ElMasry, G., & Allen, P. (2013a). Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta, 103, 130–136.Google Scholar
  55. Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2013b). Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. Food Chemistry, 141(1), 389–396.Google Scholar
  56. Kirjpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–690.Google Scholar
  57. Ladha, L., & Deepa, T. (2011). Feature selection methods and algorithms. International Journal of Computational Engineering Science, 3(5), 1787–1797.Google Scholar
  58. Lavine, B. K., Ritter, J., Moores, A. J., Wilson, M., Faruque, A., & Mayfield, H. T. (2000). Source identification of underground fuel spills by solid-phase microextraction/high-resolution gas chromatography/genetic algorithms. Analytical Chemistry, 72(2), 423–431.Google Scholar
  59. Lavine, B. K., Davidson, C. E., & Moores, A. J. (2002). Genetic algorithms for spectral pattern recognition. Vibrational Spectroscopy, 28(1), 83–95.Google Scholar
  60. Lavine, B. K. (2006). Pattern recognition. Critical Reviews in Analytical Chemistry, 36(3–4), 153–161.Google Scholar
  61. Li, J. B., Rao, X. Q., Guo, J. X., & Ying, Y. B. (2010). Hyperspectral reflectance imaging for detecting citrus canker based on dual-band ratio image classification method. 5th international symposium on advanced optical manufacturing and testing technologies. Proceedings of SPIE. doi: 10.1117/12.867065.Google Scholar
  62. Liu, D., Zeng, X.-A., & Sun, D.-W. (2013). Recent developments and applications of hyperspectral imaging for quality evaluation of agricultural products: a review. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2013.777020.Google Scholar
  63. Liu, F., He, Y., Wang, L., & Sun, G. M. (2011). Detection of organic acids and pH of fruit vinegars using near-infrared spectroscopy and multivariate calibration. Food and Bioprocess Technology, 4(8), 1331–1340.Google Scholar
  64. Luo, X., Takahashi, T., Kyo, K., & Zhang, S. (2012). Wavelength selection in vis/NIR spectra for detection of bruises on apples by ROC analysis. Journal of Food Engineering, 109(3), 457–466.Google Scholar
  65. Martens, H., & Naes, T. (1993). Multivariate Calibration. London: Wiley.Google Scholar
  66. Mendoza, F., Lu, R., Arianab, D., Cen, H., & Bailey, B. (2011). Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 62(2), 149–160.Google Scholar
  67. Menesatti, P., Zanella, A., D’Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyperspectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2(3), 308–314.Google Scholar
  68. Menesatti, P., Antonucci, F., Pallottino, F., Giorgi, S., Matere, A., Nocente, F., et al. (2013a). Laboratory vs. in-field spectral proximal sensing for early detection of Fusarium head blight infection in durum wheat. Biosystems Engineering, 114(3), 289–293.Google Scholar
  69. Menesatti, P., Antonucci, F., Pallottino, F., Bucarelli, F. M., & Costa, C. (2013b). Spectrophotometric qualification of Italian pasta produced by traditional or industrial production parameters. Food and Bioprocess Technology. doi: 10.1007/s11947-013-1138-0.Google Scholar
  70. Menesatti, P., Costa, C., & Aguzzi, J. (2010). Quality evaluation of fish by hyperspectral imaging. In D.-W. Sun (Ed.), Hyperspectral imaging for food quality: analysis and control (pp. 273–294). London: Academic.Google Scholar
  71. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2001). Introduction to linear regression analysis (3rd ed.) (pp. 131–154). New York: Wiley.Google Scholar
  72. Nakariyakul, S., & Casasent, D. P. (2009). Fast feature selection algorithm for poultry skin tumor detection in hyperspectral data. Journal of Food Engineering, 94(3–4), 358–365.Google Scholar
  73. Nakariyakul, S., & Casasent, D. P. (2011). Classification of internally damaged almond nuts using hyperspectral imagery. Journal of Food Engineering, 103(1), 62–67.Google Scholar
  74. Papetti, P., Costa, C., Antonucci, F., Figorilli, S., Solaini, S., & Menesatti, P. (2012). A RFID web-based infotracing system for the artisanal Italian cheese quality traceability. Food Control, 27(1), 234–241.Google Scholar
  75. Park, B., Yoon, S.-C., Windham, W., Lawrence, K., Kim, M., & Chao, K. (2011). Line-scan hyperspectral imaging for real-time in-line poultry fecal detection. Sensing and Instrumentation for Food Quality and Safety, 5, 25–32.Google Scholar
  76. Peng, Y., & Wu, J. (2008). Hyperspectral scattering profiles for prediction of beef tenderness. ASABE, Providence, Rhode Island, June 29–July 2.Google Scholar
  77. Peng, Y., Zhang, J., Wang, W., Li, Y., Wu, J., Huang, H., et al. (2011). Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles. Journal of Food Engineering, 102(2), 163–169.Google Scholar
  78. Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113, S110–S122.Google Scholar
  79. Ponsa, D., & Lopez, A. (2007). Feature selection based on a new formulation of the minimal redundancy-maximal-relevance criterion. Lecture notes in computer science. Pattern Recognition and Image Analysis, 4477, 47–54.Google Scholar
  80. Rajkumar, P., Wang, N., EImasry, G., Raghavan, G. S. V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200.Google Scholar
  81. Rinnan, A., Berg, F., & Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201–1222.Google Scholar
  82. Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517.Google Scholar
  83. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.Google Scholar
  84. Serranti, S., Cesare, D., Marini, F., & Bonifazi, G. (2013). Classification of oat and groat kernels using NIR hyperspectral imaging. Talanta, 103, 276–284.Google Scholar
  85. Shao, X. G., Wang, F., Chen, D., & Su, Q. D. (2004). A method for near-infrared spectral calibration of complex plant samples with wavelet transform and elimination of uninformative variables. Analytical and Bioanalytical Chemistry, 378(5), 1382–1387.Google Scholar
  86. Siedelecky, W., & Sklansky, J. (1998). On automatic feature selection. International Journal of Pattern Recognition and Artificial Intelligence, 2, 197–220.Google Scholar
  87. Siripatrawan, U., Makino, Y., Kawagoe, Y., & Oshita, S. (2011). Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta, 85, 276–281.Google Scholar
  88. Sivertsen, A. H., Kimiya, T., & Heia, K. (2011). Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy. Journal of Food Engineering, 103(3), 317–323.Google Scholar
  89. Sone, I., Olsen, R. L., Sivertsen, A. H., Eilertsen, G., & Heia, K. (2012). Classification of fresh Atlantic salmon (Salmo salar L.) fillets stored under different atmospheres by hyperspectral imaging. Journal of Food Engineering, 109(3), 482–489.Google Scholar
  90. Sugiyama, T., Sugiyama, J., Tsuta, M., Fujita, K., Shibata, M., Kokawa, M., et al. (2010). NIR spectral imaging with discriminant analysis for detecting foreign materials among blueberries. Journal of Food Engineering, 101(3), 244–252.Google Scholar
  91. Sun, D.-W. (2010). Hyperspectral imaging for food quality analysis and control. San Diego: Academic.Google Scholar
  92. Sun, D.-W., & Brosnan, T. (2003a). Pizza quality evaluation using computer vision - part 1 - Pizza base and sauce spread. Journal of Food Engineering, 57(1), 81–89. doi: 10.1016/S0260-8774(02)00275-3.Google Scholar
  93. Sun, D.-W., & Brosnan, T. (2003b). Pizza quality evaluation using computer vision - part 2 - Pizza topping analysis. Journal of Food Engineering, 57(1), 91–95. doi: 10.1016/S0260-8774(02)00276-5.Google Scholar
  94. Swierenga, H., de Groot, P. J., de Weijer, A. P., Derksen, M. W. J., & Buydens, L. M. C. (1998). Improvement of PLS model transferability by robust wavelength selection. Chemometrics and Intelligent Laboratory Systems, 41(2), 237–248.Google Scholar
  95. Talens, P., Mora, L., Morsy, N., Barbin, D. F., ElMasry, G., & Sun, D.-W. (2013). Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging. Journal of Food Engineering, 117(3), 272–280.Google Scholar
  96. Tao, F., Peng, Y., Li, Y., Chao, K., & Dhakal, S. (2012). Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. Meat Science, 90(3), 851–857.Google Scholar
  97. Vagni, F. (2007). Survey of hyperspectral and multispectral imaging technologies. RTO Technical Report, TR-SET-065-P3.Google Scholar
  98. Valous, N. A., Mendoza, F., Sun, D-W., Allen, P. (2009). Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Science, 81(1), 132–141Google Scholar
  99. Wallays, C., Missotten, B., De Baerdemaeker, J., & Saeys, W. (2009). Hyperspectral waveband selection for on-line measurement of grain cleanness. Biosystems Engineering, 104(1), 1–7.Google Scholar
  100. Wang, H. H., & Sun, D.-W. (2002). Melting characteristics of cheese: analysis of effect of cheese dimensions using computer vision techniques. Journal of Food Engineering, 52(3), 279–284. doi: 10.1016/S0260-8774(01)00116-9.Google Scholar
  101. Wang, G. C., & Jain, C. L. (2003). Regression analysis: modeling and forecasting. Fresh Meadows: Graceway.Google Scholar
  102. Wang, S., Huang, M., & Zhu, Q. (2012a). Model fusion for prediction of apple firmness using hyperspectral scattering image. Computers and Electronics in Agriculture, 80, 1–7.Google Scholar
  103. Wang, W., Peng, Y., Huang, H., & Wu, J. (2011). Application of hyper-spectral imaging technique for the detection of total viable bacteria count in pork. Sensor Letters, 9(3), 1024–1030.Google Scholar
  104. Wang, W., Li, C., Tollner, E. W., Gitaitis, R. D., & Rains, G. C. (2012b). Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderiacepacia)-infected onions. Journal of Food Engineering, 109(1), 38–48.Google Scholar
  105. Wold, J. P., Jakobsen, T., & Krane, L. (1996). Atlantic salmon average fat content estimated by near-infrared transmittance spectroscopy. Journal of Food Science, 61, 74–77.Google Scholar
  106. Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.Google Scholar
  107. Workman, J. R. J. J., Mobley, P. R., Kowalski, B. R., & Bro, R. (1996). Review of chemometrics applied to spectroscopy: 1985–98, Part 1. Applied Spectroscopy Reviews, 31, 73–124.Google Scholar
  108. Wu, D., Sun, D.-W., & He, Y. (2012a). Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet. Innovative Food Science & Emerging Technologies, 16, 361–372.Google Scholar
  109. Wu, D., Shi, H., Wang, S., He, Y., Bao, Y., & Liu, K. (2012b). Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Analytica Chimica Acta, 726, 57–66.Google Scholar
  110. Wu, D., Wang, S., Wang, N., Nie, P., He, Y., Sun, D.-W., & Yao, J. (2013). Application of time series hyperspectral imaging (TS-HSI) for determining water distribution within beef and spectral kinetic analysis during dehydration. Food and Bioprocess Technology. doi: 10.1007/s11947-012-0928-0.Google Scholar
  111. Wu, D., & Sun, D.-W. (2013). Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta, 111, 39–46.Google Scholar
  112. Wu, J., Peng, Y., Li, Y., Wang, W., Chen, J., & Dhakal, S. (2012c). Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique. Journal of Food Engineering, 109(2), 267–273.Google Scholar
  113. Ye, S. F., Wang, D., & Min, S. G. (2008). Successive projections algorithm combined with uninformative variable elimination for spectral variable selection. Chemometrics and Intelligent Laboratory Systems, 91(2), 194–199.Google Scholar
  114. Zhang, X., & He, Y. (2013). Rapid estimation of seed yield using hyperspectral images of oilseed rape leaves. Industrial Crops and Products, 42, 416–420.Google Scholar
  115. Zhu, F., Zhang, D., He, Y., Liu, F., & Sun, D. W. (2012). Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen–thawed fish fillets. Food and Bioprocess Technology. doi: 10.1007/s11947-012-0825-6.Google Scholar
  116. Zou, X., Zhao, J., Malcolm, J. W. P., Mel, H., & Mao, H. (2010a). Variables selection methods in near-infrared spectroscopy. Analytica Chimica Acta, 667(1–2), 14–32.Google Scholar
  117. Zou, X., Zhao, J., Mao, H., Shi, J., Yin, X., & Li, Y. (2010b). Genetic algorithm interval partial least squares regression combined successive projections algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves. Applied Spectroscopy, 64(7), 786–794.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Light Industry and Food SciencesSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Food Refrigeration and Computerised Food Technology, Agriculture and Food Science Centre, University College DublinNational University of IrelandBelfieldIreland

Personalised recommendations