Food and Bioprocess Technology

, Volume 7, Issue 4, pp 1047–1056 | Cite as

Development of a Hyperspectral Computer Vision System Based on Two Liquid Crystal Tuneable Filters for Fruit Inspection. Application to Detect Citrus Fruits Decay

  • J. Gómez-Sanchis
  • D. Lorente
  • E. Soria-Olivas
  • N. Aleixos
  • S. Cubero
  • J. BlascoEmail author
Original Paper


Hyperspectral systems are characterised by offering the possibility of acquiring a large number of images at different consecutive wavebands. To ensure reliable and repeatable results using this kind of optical sensors, the intensity shown by the objects in the different spectral images must be independent from the differences in sensitivity of the system for the different wavelengths. The spectral efficiency of the acquisition devices and the spectral emission of the lighting system vary across the spectrum and the images, and therefore the results can reproduce these variations if the system is not properly calibrated and corrected. This is particularly complex, when several LCTF devices are used to obtain large spectral ranges. This work presents the development of a hyperspectral system based on two liquid crystal tuneable filters for the acquisition of images of spherical fruits. It also proposes a methodology for acquiring and segmenting images of citrus fruits aimed at detecting decay in citrus fruits that has been capable of correctly classifying 98 % of pixels as rotten or non-rotten and 95 % of fruit.


Hyperspectral Citrus fruits Decay detection Fruit inspection Artificial neural networks 



This work has been partially funded by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria de España (INIA) through research project RTA2012-00062-C04-01 and RTA2012-00062-C04-03 with the support of European FEDER funds, the Universitat de València through project UV-INV-AE11-41271, and the UPV-IVIA through collaboration agreement UPV-2013000005.


  1. Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137.Google Scholar
  2. Ando, F. (1990). Multi-functional solid state imaging techniques. Journal of the Institute of Television Engineering, 44(2), 127–131.CrossRefGoogle Scholar
  3. Bei, L., Dennis, G. I., Miller, H. M., Spaine, T. W., & Carnahan, J. W. (2004). Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques. Progress in Quantum Electronics, 28(2), 67–87.CrossRefGoogle Scholar
  4. Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009). Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103(2), 137–145.CrossRefGoogle Scholar
  5. Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504.CrossRefGoogle Scholar
  6. Eckert, J., & Eaks, I. (1989). Postharvest disorders and diseases of citrus. CA, USA: The citrus industry, University California Press.Google Scholar
  7. ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008). Early detection of apple bruises on different background colours using hyperspectral imaging. LWT- Food Science and Technology, 41(2), 337–345.CrossRefGoogle Scholar
  8. Erives, H., & Fitzgerald, G. J. (2005). Automated registration of hyperspectral images for precision agriculture. Computers and Electronics in Agriculture, 47(2), 103–119.CrossRefGoogle Scholar
  9. Geladi, P. L. M. (2007). Calibration standards and image calibration. In H. F. Grahn & P. Geladi (Eds.), Techniques and applications of hyperspectral image analysis, pp 203–220. Chichester, England: John Wiley & Sons.Google Scholar
  10. Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesino-Herrero, C., Moltó, E., et al. (2008a). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.CrossRefGoogle Scholar
  11. Gómez-Sanchis, J., Moltó, E., Camps-Valls, G., Gómez-Chova, L., Aleixos, N., & Blasco, J. (2008b). Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. Journal of Food Engineering, 85(2), 191–200.CrossRefGoogle Scholar
  12. Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780–785.CrossRefGoogle Scholar
  13. Hecht, E. (2003). Optics (4th ed.). Reading, USA: Addison Wesley.Google Scholar
  14. Karoui, R., & Blecker, C. (2011). Fluorescence spectroscopy measurement for quality assessment of food systems—a review. Food and Bioprocess Technology, 4(3), 364–386.CrossRefGoogle Scholar
  15. Kim, D. G., Burks, T. F., Qin, J., & Bulanon, M. D. (2009). Classification of grapefruit peel diseases using colour texture feature analysis. International Journal of Agricultural and Biological Engineering, 2(3), 41–50.Google Scholar
  16. Kokawa, M., Sugiyama, J., Tsuta, M., Yoshimura, M., Fujita, K., Shibata, M., Araki, T., & Nabetani, H. (2012). Development of a quantitative visualisation technique for gluten in dough using fluorescence fingerprint imaging. Food and Bioprocess Technology. DOI  10.1007/s1947-012-0982-7 (In press)
  17. López-Álvarez, M., Hernández-Andrés, J., Romero, J., Campos, J., & Pons, A. (2009). Calibrating the elements of a multispectral imaging system. Journal of Imaging Science and Technology, 53(3), 31102-1-31102-10.Google Scholar
  18. Lorente, D., Blasco, J., Serrano, A. J., Soria-Olivas, E., Aleixos, N., & Gómez-Sanchis, J. (2012b). Comparison of ROC feature selection method for the detection of decay in citrus fruit using hyperspectral images. Food and Bioprocess Technology. DOI:  10.1007/s11947-012-0951-1 (In press).
  19. Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012b). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142.CrossRefGoogle Scholar
  20. Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2013). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology, 6(2), 530–541.CrossRefGoogle Scholar
  21. Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2011). NIR Spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5(2), 425–424.CrossRefGoogle Scholar
  22. Menesatti, P., Zanella, A., D’Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2(3), 308–314.CrossRefGoogle Scholar
  23. Moltó, E., Blasco, J., & Gómez-Sanchis, J. (2010). Analysis of hyperspectral images of citrus fruits. In D.-W. Sun (Ed.), Hyperspectral Imaging for food quality analysis and control (pp. 321–348). San Diego, California, USA: Academic Press/Elsevier.CrossRefGoogle Scholar
  24. Palou, L., Smilanick, J. L., & Droby, S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue moulds. Stewart Postharvest Review, 4(2), 1–16.CrossRefGoogle Scholar
  25. Pang, Z., Laplante, N. E., & Filkins, R. J. (2012). Dark pixel intensity determination and its applications in normalising different exposure time and autofluorescence removal. Journal of Microscopy, 246(1), 1–10.Google Scholar
  26. Pathare, P. B., Opara, U. L., & Al-Said, F. A. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.CrossRefGoogle Scholar
  27. Peng, Y., & Lu, R. (2006). An LCTF-based multispectral imaging system for estimation of apple fruit firmness; part I. acquisition and characterization of scattering images. Transactions of ASAE, 49(1), 259–267.CrossRefGoogle Scholar
  28. Qin, J., Burksa, T., Ritenourb, M., & Bonn, W. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93(2), 183–191.CrossRefGoogle Scholar
  29. Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. Journal of Food Engineering, 108(1), 87–93.CrossRefGoogle Scholar
  30. Sun, D.-W. (Ed.). (2009). Infrared spectroscopy for food quality analysis and control. San Diego, California, USA: Academic Press/Elsevier.Google Scholar
  31. Sun, D.-W. (Ed.). (2010). Hyperspectral imaging for food quality analysis and control. San Diego, California, USA: Academic Press/Elsevier.Google Scholar
  32. Vadivambal, R., & Jayas, D. S. (2011). Applications of thermal imaging in agriculture and food industry—a review. Food and Bioprocess Technology, 4(2), 186–199.CrossRefGoogle Scholar
  33. Valencia-Chamorro, S. A., Palou, L., del Río, M. A., & Pérez-Gago, M. B. (2011). Performance of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings with antifungal food additives during cold storage of ‘Clemenules’ mandarins. LWT- Food Science and Technology, 44(10), 2342–2348.CrossRefGoogle Scholar
  34. Vélez-Rivera, N., Blasco, J., Chanona-Pérez, J. J., Calderón-Domínguez, G., Perea-Flores, M. J., Arzate-Vázquez, I., Cubero, S., & Farrera-Rebollo, R. (2013). Computer vision system applied to classification of ‘Manila’ mangoes during ripening process. Food and Bioprocess Technology. DOI:  10.1007/s11947-013-1142-4 (In press).
  35. Vidal, A., Talens, P., Prats-Montalbán, J. M., Cubero, S., Albert, F., & Blasco, J. (2012). In-line estimation of the standard colour index of citrus fruits using a computer vision system developed for a mobile platform. Food and Bioprocess Technology. DOI:  10.1007/s11947-012-1015-2 (In press).
  36. Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2010). Analysis of acousto-optic tunable filter performance for imaging applications. Optical Engineering, 49(11), 113203.CrossRefGoogle Scholar
  37. Vila-Francés, J., Calpe-Maravilla, J., Gómez-Chova, L., & Amorós-López, J. (2011). Design of a configurable multispectral imaging system based on an AOTF. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(1), 259–262.CrossRefGoogle Scholar
  38. Wang, W., Li, C., Tollner, E. W., Rains, G. C., & Gitaitis, R. D. (2012). A liquid crystal tunable filter based shortwave infrared spectral imaging system: calibration and characterization. Computers and Electronics in Agriculture, 80, 145–154.Google Scholar
  39. Wu, D., Wang, S., Wang, N., Nie, P., He, Y., Sun, D. -W., & Yao, J. (2012). Application of time series hyperspectral imaging (TS-HSI) for determining water distribution within beef and spectral kinetic analysis during dehydration. Food and Bioprocess Technology. DOI  10.1007/s11947-012-0928-0 (In press).
  40. Zhu, F., Zhang, D., He, Y., Liu, F., & Sun, D. -W. (2012). Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen–thawed fish fillets. Food and Bioprocess Technology. DOI  10.1007/s11947-012-0825-6 (In press).

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Gómez-Sanchis
    • 1
  • D. Lorente
    • 2
  • E. Soria-Olivas
    • 1
  • N. Aleixos
    • 3
  • S. Cubero
    • 2
  • J. Blasco
    • 2
    Email author
  1. 1.Intelligent Data Analysis Laboratory, IDAL. Electronic Engineering DepartmentUniversitat de ValènciaValenciaSpain
  2. 2.Centro de AgroingenieríaInstituto Valenciano de Investigaciones Agrarias (IVIA)ValenciaSpain
  3. 3.Instituto en Bioingeniería y Tecnología Orientada al Ser HumanoUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations