Advertisement

Food and Bioprocess Technology

, Volume 7, Issue 4, pp 1114–1127 | Cite as

Effect of Pear, Apple and Date Fibres from Cooked Fruit By-products on Dough Performance and Bread Quality

  • Brahim Bchir
  • Holy Nadia Rabetafika
  • Michel Paquot
  • Christophe Blecker
Original Paper

Abstract

This study examined the effect of the incorporation of flesh fibre concentrate (FFC) from apple, pear, and date pomaces on wheat bread dough performance and bread quality. The nutritional composition and techno-functional properties (water-holding capacity, oil-holding capacity, swelling capacity) of FFC were determined beforehand. Dough performance was evaluated by farinograph, alveograph and visco-amylograph. Bread quality was assessed by physical (weight, specific volume, and color) and textural (hardness and elasticity) parameters. Digital imaging analysis was also performed in order to better understand the observed effects. Results showed that the addition of FFC in wheat flour significantly improved (P < 0.05) dough properties inducing an increase of water absorption (from 55 to 60 %), of stability (from 4 to 31 min),of tenacity (from 83 to 116 mmH2O) , a reduction of extensibility (from 69 to 29 mm), of softening (from 60 to 20 BU), of breakdown (from 34 to 25 BU) and of setback (from 103 to 93 BU) in comparison to the control dough (without fibre). The formulation containing FFC produced loaves that had various colors (crust, 0 < ΔE* < 10 and crumb, 0 < ΔE* < 20; ΔE* corresponding to color variation), a comparable specific volume (2.7 vs 2.9 cm3/g for control) and a more aerated internal crumb structure compared to the control. During storage of breads at 20 °C, there was no significant difference (P < 0.05) between enriched and control bread crumb and crust texture profiles.

Keywords

Flesh fibre concentrate Bread Dough Farinograph Alveograph Visco-amylograph 

Abbreviations

FFC

Flesh fibre concentrate

DF

Dietary fibre

DM

Dry matter

aw

Water activity

IDF

Insoluble dietary fibre

NDF

Neutral dietary fibre

WHC

Water-holding capacity

OHC

Oil-holding capacity

SWC

Swelling capacity

WA

Water absorption

BU

Brabender units

DDT

Dough development time

DS

Degree of softening

QI

Quality index

W

Deformation energy

P

Tenacity

L

Extensibility

E*

Color difference

S

Stability

Notes

Acknowledgments

The authors gratefully acknowledge “Siroperie Meurens” for their cooperation, the Walloon Region of Belgium for the financial support of Wal-Aid Wagralim project.

References

  1. American Association of Cereal Chemists (AACC). (2000). Approved methods of the AACC, (10th ed.). St. Paul, MN. Methods 54-30-02.Google Scholar
  2. Abdel-Kader, Z. M. (2000). Enrichment of Egyptian “balady” bread. Part 1. Baking studies, physical and sensory evaluation of enrichment with decorticated caracted broadbeans flour (Vicia faba L.).Nahrung, 44, 418–421.Google Scholar
  3. Abdul-Hamid, A., & Luan, Y. S. (2000). Functional properties of dietary fibre from defatted rice bran. Food Chem, 68, 15–19.CrossRefGoogle Scholar
  4. Aguedo, M., Kohnen, S., Rabetafika, N., Vanden Bossche, S., Sterckx, J., Blecker, C., Beauve, C., & Paquot, M. (2012). Composition of by-products from cooked fruit processing and potential use in food products. Journal of Food composition and analysis, 27(1), 61–69.CrossRefGoogle Scholar
  5. Angioloni, A., & Collar, C. (2009). Gel, dough and fibre enriched fresh breads: relationships between quality features and staling kinetics. Journal of Food Engineering, 91, 526–532.CrossRefGoogle Scholar
  6. Anil, M. (2007). Using of hazelnut testa as a source of dietary fiber in breadmaking. J Food Eng, 80, 61–67.CrossRefGoogle Scholar
  7. Association of Official Analytical Chemists. (1995). Official methods of analysis of (15th ed.). Washington, DCGoogle Scholar
  8. Barcenas, M. E., & Rosell, C. M. (2006). Different approaches for improving the quality and extending the shelf life of the partially baked bread: low temperatures and HPMC addition. Journal Food Engineering, 72, 92–99.CrossRefGoogle Scholar
  9. Bchir, B., Besbes, S., Karoui, R., Attia, H., Paquot, M., & Blecker, C. (2012a). Effect of air-drying conditions on physico-chemical properties of osmotically pre-treated pomegranate seeds. Food Bioprocess Technology, 5, 1840–1852.CrossRefGoogle Scholar
  10. Bchir, B., Besbes, S., Karoui, R., Paquot, M., Attia, H., & Blecker, C. (2012b). Osmotic dehydration kinetics of pomegranate seeds using date juice as an immersion solution base. Food Bioprocess Technology, 5, 999–1009.CrossRefGoogle Scholar
  11. Borchani, C., Masmoudi, M., Besbes, S., Attia, H., Derouanne, C., & Blecker, C. (2011). Effect of date flesh fiber concentrate addition on dough performance and bread quality. Journal of texture Studies, 42, 300–308.CrossRefGoogle Scholar
  12. Bouaziz, M., Ben Amara, W., Attia, H., Blecker, C., & Besbes, S. (2010). Effect of the addition of defatted date seeds on wheat dough performance and bread quality. J Texture Studies, 41, 511–531.CrossRefGoogle Scholar
  13. Cadden, A. M. (1987). Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J Food Sci, 52, 1595–1599.CrossRefGoogle Scholar
  14. Chau, C. F., & Huang, Y. L. (2003). Comparison of the chemical composition and physicochemical properties of different fiber prepared from de peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem., 51, 2615–2618.CrossRefGoogle Scholar
  15. Chen, H., Rubenthaler, G. L., & Schanus, E. G. (1988). Effect of apple fiber and cellulose on the physical properties of wheat flour. J Food Sci, 53, 304–305.CrossRefGoogle Scholar
  16. Clark, A. H. (1991). Structural and mechanical properties of biopolymer gels. In E. Dickinson (Ed.), Food polymers, gels, and colloids (pp. 322–338). Cambridge: The Royal Society of Chemistry.CrossRefGoogle Scholar
  17. Collar, C., Santos, E., & Rosell, C. M. (2007). Assessment of the rheological profile of fibre-enriched bread doughs by response surfacemethodology. J. Food Eng., 78, 820–826.CrossRefGoogle Scholar
  18. Correa, M. J., Perez, G. T., & Ferrero, C. (2012). Pectins as breadmaking additives: effect on dough rheology and bread quality. Food Bioprocess Technology, 5, 2889–2898.CrossRefGoogle Scholar
  19. Escalada, D., Pla, M., Uribe, E., Fissore, L., & Gerschenson, A. M. (2010). Influence of the isolation procedure on the characteristics of fibre-rich products obtained from quince wastes. Journal of Food Engineering, 96, 239–248.CrossRefGoogle Scholar
  20. Escalada, D., Pla, M., Rojas, A. M., & Gerschenson, L. N. (2013). Effect of butternut (Cucurbita moschata Duchesne ex Poiret) fibres on bread making, quality and staling. Food Bioprocess Technology, 6, 828–838.CrossRefGoogle Scholar
  21. DeVries, J. W., Prosky, L., Li, B., & Cho, S. (1999). A historical perspective of defining dietary fiber. Cereal Foods World, 44, 367–369.Google Scholar
  22. Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem, 124, 411–421.CrossRefGoogle Scholar
  23. Farrera-Rebollo, R., Salgado-Cruz, R., Chanona-Perez, M., Gutierrez-Lopez, F. G., & Calderon, G. (2012). Evaluation of image analysis tools for characterization of sweet bread crumb structure. Food Bioprocess Technology, 5, 474–484.CrossRefGoogle Scholar
  24. Figuerola, F., Hurtado, M. L., Estevez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem, 91, 395–401.CrossRefGoogle Scholar
  25. Goesaert, H., Briijs, K., Veraverbeke, W. S., Courtin, C. M., Geruers, K., & Delcour, J. A. (2005). Wheat flour constituent: how they impact bread and how to impact their functionality. Trends Food Sci Technol, 16, 12–30.CrossRefGoogle Scholar
  26. Gómez, M., Ronda, F., Blanco, C. A., Pedro, A., & Apesteguia, A. (2003). Effect of dietary fibre on dough rheology and bread quality. Eur. Food Res. Technol., 216, 51–56.Google Scholar
  27. Grigelmo-Miguel, N., & Martin-Belloso, O. (1999). Characterisation of dietary fiber fromorange juice extraction. Food Res Int, 31, 355–361.CrossRefGoogle Scholar
  28. Guillon, F., & Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res Int, 33, 233–245.CrossRefGoogle Scholar
  29. Gupta, P., & Premavalli, K. S. (2010). Effect of particle size reduction on physicochemical properties of ashground (Benincasa hispida) and radish (Raphanus sativus) fibres. Int J Food Sci Nutr, 61(1), 18–28.CrossRefGoogle Scholar
  30. He, H., & Hoseney, R. C. (1990). Changes in bread firmness and moisture during long-term storage. Cereal Chemi., 67, 603–605.Google Scholar
  31. Hug-Iten, S., Escher, F., & Conde-Petit, B. (2003). Staling of bread: role of amylose and amylopectin and influence of starchdegrading enzymes. Cereal Chem, 80(6), 654–661.Google Scholar
  32. Jeltema, M., & Zabic, M. (1979). Fibre components-quantitation and relationship to cake quality. J Food Sci, 44, 1732–1735.CrossRefGoogle Scholar
  33. Kim, Y. S., Wiesenborn, D. P., Orr, P. H., & Grant, L. A. (1995). Differential scanning calorimetry as a tool for screening potato starch for novel properties. J Food Sci, 60(5), 1060–1065.CrossRefGoogle Scholar
  34. Lario, Y., Sendra, E., Garcia-Perez, J., Fuentes, C., Sayas-Barbera, E., Fernandez-Lopez, J., & Perez-Alvarez, J. A. (2004). Preparation of high dietary fiber powder from lemon juice by-products. Innov. Food Sci. Emerg., 5, 113–117.CrossRefGoogle Scholar
  35. Larrauri, J. A. (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends Food Sci Technol, 10(1), 3–8.CrossRefGoogle Scholar
  36. Laurikainen, T., Harkonen, H., Autio, K., & Poutanen, K. (1998). Effects of enzymes in fibre-enriched-baking. J Sci Food Agric, 76, 239–249.CrossRefGoogle Scholar
  37. Mac Connell, A. A., Eastwood, A., & Mitchell, W. D. (1974). Physical characterization of vegetable foodstuffs that could influence bowel function. J Sci Food Agric, 25, 1457–1464.Google Scholar
  38. Mahawar, M., Singh, A., & Jalgaonkar, K. (2012). Utility of apple pomace as a substrate for various products: a review. Food and Bioproducts Procesing, 90, 597–605.CrossRefGoogle Scholar
  39. Martin, J., Gordon, M., & Fitzwater, E. (1991). The case for iron. American Society of Liminology and Occanography, 36, 1793–1802.CrossRefGoogle Scholar
  40. Martin-Cabrejas, M., Jaime, L., Karanja, C., Downie, A., Parker, M., Fransisco, J., Maina, G., Esteban, R., Smith, A., & Waldron, K. (1995). Modications to physicochemical and nutrional properties of hard-to-cook beans (Phaseolus vulgaris L.) by extraction cooking. J. Agri Food Chem, 47, 1174–1182.CrossRefGoogle Scholar
  41. Osundahunsi, O. F., Fagbemi, T. N., Kesselman, E., & Shimoni, E. (2003). Comparison of the physicochemical properties and pasting characteristics of flour and starch from red and white sweet potato cultivars. Journal of Agriculture and Food Chemistry, 51, 2232–2236.CrossRefGoogle Scholar
  42. Oarrott, M. E., & Thrall, B. E. (1978). Functional properties of various fibers physical properties. J Food Sci, 43, 759–766.CrossRefGoogle Scholar
  43. Pelucchi, C., Malvezzi, M., La Vecchia, C., Levi, F., Decarli, A., & Negri, E. (2004). Mesothelioma epidemic in Western Europe: an update. Br J Cancer, 90, 1022–1024.CrossRefGoogle Scholar
  44. Park, H., Seib, P. A., & Chung, O. K. (1997). Fortifying bread with a mixture of wheat fiber and psyllium husk fiber plus three antioxidants. Cereal Chem., 74, 207–211.CrossRefGoogle Scholar
  45. Pourfarzad, A., Mahdavian-Mehr, H., & Sedaghat, N. (2013). Coffee silverskin as a source of dietary fiber in bread-making: optimization of chemical treatment using response surface methodology. LWT- Food Sci Technol, 50, 599–606.CrossRefGoogle Scholar
  46. Rabetafika, H., N., Bchir, B., Aguedo, M., Paquot, M., & Blecker C. (2013). Effects of processing on the composition and physicochemical properties of dietary fibre from cooked fruit pomaces. Food Bioprocess Tech. doi: 10.1007/s11947-013-1073-0.
  47. Romano, R., Baranyai, L., Gottschalk, K., & Zude, M. (2008). An approach for monitoring the moisture content changes of drying banana slices with laser light backscattering imaging. Food Bioprocess Tech, 4, 410–414.Google Scholar
  48. Rosales-Juarez, M., Mendoza, G. B., Guel, C. E., Bautista, F. L., Perez, J. C., Lopez, G. G., Rebollo, F. R., & Dominguez, C. G. (2008). Changes on dough rheological characteristics and bread quality as result of the addition of germinated and non germinated soybean flour. Food Bioprocess Technology, 1, 152–160.CrossRefGoogle Scholar
  49. Rosell, C. M., Santos, E., & Collar, C. (2010). Physical characterization of fiber-enriched bread doughs by dual mixing and temperature constraint using the Mixolab. Eur Food Res Technol, 231, 535–544.Google Scholar
  50. Sabanis, D., Lebesi, D., & Tzia, C. (2009). Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT- Food Sci Technol, 42, 1380–1389.CrossRefGoogle Scholar
  51. Saint-Denisa, T., & Groupy, J. (2004). Optimization of a nitrogen analyser based on the Dumas method. Anal Chim Acta, 515, 191–198.CrossRefGoogle Scholar
  52. Sangmark, A., & Noomhorm, A. (2003). Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem, 80, 221–229.CrossRefGoogle Scholar
  53. Sangnark, A., & Noomhorm, A. (2004). Effect of dietary fibers fromsugarcane bagasse and sucrose ester on dough and bread properties. LWT- Food Sci Technol, 37, 697–704.CrossRefGoogle Scholar
  54. Saura-Calixto, F. (1998). Antioxidant dietary fiber product: a new concept and a potential food ingredient. J Agric Food Chem, 46, 4303–4306.CrossRefGoogle Scholar
  55. Scanlon, M., & Zghal, M. (2001). Bread properties and crumb structure. Food Res Int, 34, 841–864.CrossRefGoogle Scholar
  56. Shittu, T. A., Dixon, A., Awonorin, S. O., Sanni, L. O., & Mazia-Dioxon, B. (2008). Bread from composite cassava-wheat flour: effect of cassava genotype and nitrogen fertilizer on bread quality. Food Res Int, 41, 569–578.CrossRefGoogle Scholar
  57. Stojceska, V., & Ainsworth, P. (2008). The effect of different enzymes on the quality of high-fibre enriched brewer’s spent grain breads. Food Chem, 110, 865–872.CrossRefGoogle Scholar
  58. Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem, 104, 686–692.CrossRefGoogle Scholar
  59. Sun-Waterhouse, D., Farr, J., Wibisono, R., & Saleh, Z. (2008). Fruit-based functional foods I: production of food-grade apple fibre ingredients. Int. J. Food Sci. Technol., 43, 2113–2122.CrossRefGoogle Scholar
  60. Torre-Gutiérrez, L., Chel-Guerrero, L., & Betancur-Ancona, D. (2008). Funtional properties of square banana (Musa balbisiana) starch. Food Chem, 106, 1138–1144.CrossRefGoogle Scholar
  61. Tsatsaragkou, K., Yiannopoulos, S., Kontogiorgi, A., Poulli, E., Krokida, M., & Mandala, I. (2012). Mathematical approch of structural and textural properties of gluten free bread anriched with carob flour. Journal of Cereal Science. doi: 10.1016/j.jcs.2012.07.007.Google Scholar
  62. Van Soest, P. J., & Wine, R. (1967). Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell wall constituents. Journal of the Association of Official Analytical Chemistry, 50, 50–55.Google Scholar
  63. Vergara-Valencia, N., Granados-Péreza, E., Agama-Acevedo, E., Tovar, J., Ruales, J., & Bello-Pérez, L. A. (2007). Fibre concentrate from mango fruit: characterization, associated antioxidant capacity and application as a bakery product ingredient. LWT- Food Sci Technol, 40, 722–729.CrossRefGoogle Scholar
  64. Wang, J., Rosell, C. M., & Benedito De Barber, C. (2002). Effect of the addition of different fibers on wheat dough performance and bread quality. Food Chem, 79, 221–226.CrossRefGoogle Scholar
  65. Wiesenborn, D. P., Orr, P. H., Casper, H. H., & Tacke, B. K. (1994). Potato starch behaviour as related to some hysical/chemical properties. J Food Sci, 59, 644–648.CrossRefGoogle Scholar
  66. Wittig de Penna, E., Bunger, A., Ibieta, A., Soto, D., Hernández, N., & López, L. (1998). Alimentos para el adulto mayor: muffins enriquecidos con fibra de lupino. In Programa Iberoamericano de Ciencia y Tecnología para el desarrollo, CYTED (Eds.), Temas en Tecnología de Alimentos. Vol. 2. Fibra Dietética (pp. 259–277). Mexico DF: Alfaomega Grupo Editor.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Brahim Bchir
    • 1
  • Holy Nadia Rabetafika
    • 2
  • Michel Paquot
    • 2
  • Christophe Blecker
    • 1
  1. 1.Department of Food Science and Formulation, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
  2. 2.Department of Industrial Biological Chemistry, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium

Personalised recommendations