Advertisement

Food and Bioprocess Technology

, Volume 7, Issue 4, pp 1183–1194 | Cite as

Computer Vision System Applied to Classification of “Manila” Mangoes During Ripening Process

  • Nayeli Vélez-Rivera
  • José Blasco
  • Jorge Chanona-Pérez
  • Georgina Calderón-Domínguez
  • María de Jesús Perea-Flores
  • Israel Arzate-Vázquez
  • Sergio Cubero
  • Reynold Farrera-Rebollo
Original Paper

Abstract

Mango is an important crop that is marketed on a large scale around the world. The degree of ripeness of mangoes is an important quality attribute that has traditionally been evaluated manually through their physicochemical properties and color parameters, but recent non-destructive technologies such as computer vision systems (CVS) are emerging to replace these destructive, slow, and costly methods by others that are faster and more reliable. In the present work, physicochemical properties and color parameters obtained using a CVS at laboratory level were linked to establish the ripening stages of mango cv. “Manila.” Classification process involving multivariate analysis was applied with the aim of using only color parameters to estimate levels of ripeness. A set of 117 mangoes was used to estimate the ripening index (RPI) from the physicochemical properties, and another set of 39 mangoes was used to validate the classification process in mangoes harvest in a different season. The RPI was useful for establishing three phases of maturation, namely: pre-climacteric, climacteric, and senescence. These showed correspondences with the color changes evaluated in two color spaces (CIELAB and HSB). Principal component analysis was efficient in selecting the most significant variables and separating the mangoes into the three ripening stages. Multivariate discriminant analysis made it possible to obtain classification rates of 90 % by using only a*, b*, H and S color coordinates, the CIELAB system being, in general, more efficient at classification than HSB. The results obtained showed that CVS developed for the study can be used as a useful non-invasive, efficient method for the evaluation of the ripeness of mangoes.

Keywords

Mango Physicochemical properties Image analysis Maturation phases 

Notes

Acknowledgments

Nayeli Velez Rivera wishes to thank CONACyT for the scholarship provided. This research was funded through projects 20110627 and 20121001, at the Instituto Politécnico Nacional (SIPIPN-Mexico), 133102 (CONACyT) and Catedra Coca-Cola para jóvenes investigadores 2011 (Coca Cola-CONACYT). The corresponding author also wishes to thank CONACYT and the Secretaría Académica of the IPN for financial support for the sabbatical stay.

References

  1. Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137.CrossRefGoogle Scholar
  2. Arzate-Vázquez, I., Chanona-Pérez, P. J., Perea-Flores, M., De, J., Calderón-Domínguez, G., Moreno-Armendáriz, M., Calvo, H., Godoy-Calderón, S., Quevedo, R., & Gutiérrez-López, G. (2011). Image processing applied to classification of avocado variety Hass (Persea americana Mill) during ripening process. Food Bioprocess Technology, 4, 1307–1313.CrossRefGoogle Scholar
  3. Blasco, J., Aleixos, N., Cubero, S., Gómez-Sanchis, J., & Moltó, E. (2009a). Automatic sorting of satsuma (Citrus unshiu) segments using morphological features. Computers and Electronics in Agriculture, 66(1), 1–8.Google Scholar
  4. Blasco, J., Cubero, S., Gómez-Sanchis, J., Mira, P., & Moltó, E. (2009b). Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision. Journal of Food Engineering, 90(1), 27–34.CrossRefGoogle Scholar
  5. Chonhenchob, V., Kamhangwong, D., Kruenate, J., Khongrat, K., Tangchantra, N., Wichai, U., & Singh, S. P. (2010). Preharvest bagging with wavelength-selective materials enhances development and quality of mango (Mangifera indica L.) cv. Nam Dok Mai #4. Journal of the Science of Food and Agriculture, 91, 664–671.CrossRefGoogle Scholar
  6. Corkidi, G., Balderas-Ruíz, K. A., Taboada, B., Serrano-Carreón, L., & Galindo, E. (2006). Assessing mango anthracnose using a new three-dimensional image analysis technique to quantify lesions on fruit. Plant Pathology, 55(2), 250–257.CrossRefGoogle Scholar
  7. Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504.CrossRefGoogle Scholar
  8. Djioua, T., Charles, F., Lopez-Lauri, F., Filgueiras, H., Coudret, A., Freire, M., Jr., Ducamp-Collin, M. N., & Sallanon, H. (2009). Improving the storage of minimally processed mangoes (Mangifera indica L.) by hot water treatments. Postharvest Biology and Technology, 52(2), 221–226.CrossRefGoogle Scholar
  9. FAOSTAT (2010). Available at: http://faostat3.fao.org/home/index.html#VISUALIZE. Accessed Mar 2013.
  10. Ford, A., & Roberts, A. (1998). Colour space conversions. London: Westminster University.Google Scholar
  11. Furferi, R., Governi, L., & Volpe, Y. (2010). ANN-based method for olive ripening index automatic prediction. Journal of Food Engineering, 101(3), 318–328.CrossRefGoogle Scholar
  12. Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesino-Herrero, C., Moltó, E., & Blasco, J. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.CrossRefGoogle Scholar
  13. Hutchings, J.B., Luo, R., Ji, W. (2002). Calibrated colour imaging analysis of food. In: D. MacDougall (Ed.), Colour in food. Cambridge: Woodhead Publishing.Google Scholar
  14. Jha, S. N., Kingsly, A. R. P., & Chopra, S. (2005). Determination of sweetness of intact mango using visual spectral analysis. Biosystems Engineering, 91(2), 157–161.CrossRefGoogle Scholar
  15. Jha, S. N., Kingsly, A. R. P., & Chopra, S. (2006). Physical and mechanical properties of mango during growth and storage for determination of maturity. Journal of Food Engineering, 72, 73–76.CrossRefGoogle Scholar
  16. Jha, S. N., Chopra, S., & Kingsly, A. R. P. (2007). Modeling of color values for nondestructive evaluation of maturity of mango. Journal of Food Engineering, 78, 22–26.CrossRefGoogle Scholar
  17. Jha, S. K., Sethi, S., Srivatav, M., Dubey, A. K., Sharma, R. R., Samuel, D. V. K., & Singh, A. K. (2010). Firmness characteristics of mango hybrid under ambient storage. Journal of Food Engineering, 97, 208–212.CrossRefGoogle Scholar
  18. Joas, J., Caro, Y., & Lechaudel, M. (2009). Comparison of postharvest changes in mango (cv Cogshall) using a ripening class index (Rci) for different carbon supplies and harvest dates. Postharvest Biology and Technology, 54, 25–31.CrossRefGoogle Scholar
  19. Joblove, G. H., & Greenberg, D. (1978). Color spaces for computer graphics. Computer Graphics, 12(3), 20–25.CrossRefGoogle Scholar
  20. Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer.Google Scholar
  21. Kang, H. R. (1997). Color technology for electronic imaging devices. Bellingham: SPIE.Google Scholar
  22. Kang, S. P., East, A. R., & Trujillo, F. J. (2008). Colour vision system evaluation of bicolour fruit: A case study with ‘B74’ mango. Postharvest Biology and Technology, 49(1), 77–85.CrossRefGoogle Scholar
  23. Kefialew, Y., & Ayalew, A. (2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology, 50, 8–11.CrossRefGoogle Scholar
  24. Kienzle, S., Sruamsiri, P., Carle, R., Sirisakulwata, S., Spreer, W., & Neidhart, S. (2011). Harvest maturity specification for mango fruit (Mangifera indica L. ‘Chok Anan’) in regard to long supply chains. Postharvest Biology and Technology, 61, 41–55.CrossRefGoogle Scholar
  25. Lai, C.-Y., Shih, S.-W., Chen, B.-H., & Hong, J.-S. (2009). An intelligent system for overlaying texts on background images based on computational aesthetics. In Plemenos & Miaoulis (Eds.), Intelligent computer graphics (pp. 105–124). Berlin: Springer.Google Scholar
  26. Leemans, V., & Destain, M.-F. (2004). A real-time grading method of apples based on features extracted from defects. Journal of Food Engineering, 61, 83–89.CrossRefGoogle Scholar
  27. León, K., Mery, D., Pedreschi, F., & León, J. (2006). Color measurement in L*a*b* units from RGB digital images. Food Research International, 39(10), 1084–1091.CrossRefGoogle Scholar
  28. Li, Z., Wang, N., Raghavan, G. S. V., & Vigneault, C. (2009). Ripeness and rot evaluation of ‘Tommy Atkins’ mango fruit through volatiles detection. Journal of Food Engineering, 91(2), 319–324.CrossRefGoogle Scholar
  29. Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142.CrossRefGoogle Scholar
  30. Medina, W., Skurtys, O., & Aguilera, J. M. (2010). Study on image analysis application for identification Quinoa seeds (Chenopodium quinoa Willd) geographical provenance. LWT- Food Science and Technology, 43, 238–246.CrossRefGoogle Scholar
  31. Mendoza, F., Dejmek, P., & Aguilera, J. (2006). Calibrated color measurements of agricultural foods using image analysis. Postharvest Biology and Technology, 41, 285–295.CrossRefGoogle Scholar
  32. Menesatti, P., Zanella, A., D’Andrea, S., Costa, C., Paglia, G., & Pallottino, F. (2009). Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology, 2(3), 308–314.CrossRefGoogle Scholar
  33. Menesatti, P., Angelini, C., Pallottino, F., Antonucci, F., Aguzzi, J., & Costa, C. (2012). RGB color calibration for quantitative image analysis: The "3D thin-plate spline" warping approach. Sensors, 12, 7063–7079.CrossRefGoogle Scholar
  34. Ornelas-Paz, J., De, J., Yahiaa, E. M., & Gardea, A. A. (2008). Changes in external and internal color during postharvest ripening of ‘Manila’ and ‘Ataulfo’ mango fruit and relationship with carotenoid content determined by liquid chromatography–APcI+−time-of-flight mass spectrometry. Postharvest Biology and Technology, 50, 145–152.CrossRefGoogle Scholar
  35. Paschos, G. (2001). Perceptually uniform colour spaces for colour texture analysis: An empirical evaluation. IEEE Transactions on Image Processing, 10(6), 932–937.CrossRefGoogle Scholar
  36. Pathare, P. B., Opara, U. L., & Al-Said, F. A. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60.CrossRefGoogle Scholar
  37. Quevedo, R., Mendoza, F., Aguilera, J., Chanona, J., & Gutiérrez, G. (2008). Determination of senescent spotting in banana (Musa cavendish) using fractal texture Fourier image. Journal of Food Engineering, 84, 509–515.CrossRefGoogle Scholar
  38. Quevedo, R., Aguilera, J., & Pedreschi, F. (2010). Color of salmon fillets by computer vision and sensory panel. Food and Bioprocess Technology, 3(5), 637–643.CrossRefGoogle Scholar
  39. Rajkumar, P., Wang, N., EIMasry, G., Raghavan, G. S. V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200.CrossRefGoogle Scholar
  40. Ruíz, M., & Guadarrama, A. (1992). Comportamiento postcosecha del mango (Mangifera indica) tipo Bocado durante maduración controlada. Revista de la Facultad de Agronomía (Maracay), 18, 79–93.Google Scholar
  41. Schmilovitch, Z., Mizrach, A., Hoffman, A., Egozi, H., & Fuchs, Y. (2000). Determination of mango physiological indices by near-infrared spectrometry. Postharvest Biology and Technology, 19, 245–252.CrossRefGoogle Scholar
  42. Valente, M., Prades, A., & Laux, D. (2013). Potential use of physical measurements including ultrasound for a better mango fruit quality characterisation. Journal of Food Engineering, 116(1), 57–64.CrossRefGoogle Scholar
  43. Vásquez-Caicedo, A. L., Sruamsiri, P., Carle, R., & Neidhart, S. (2005). Accumulation of all-trans-β-carotene and its 9-cis and 13-cis stereoisomers during postharvest ripening of nine Thai mango cultivars. Journal of Agricultural and Food Chemistry, 53, 4827–4835.CrossRefGoogle Scholar
  44. Vidal, A., Talens, P., Prats-Montalbán, J. M., Cubero, S., Albert, F., & Blasco, J. (2012). In-line estimation of the standard colour index of citrus fruits using a computer vision system developed for a mobile platform. Food and Bioprocess Technology. doi: 10.1007/s11947-012-1015-2.Google Scholar
  45. Wanitchang, P., Terdwongworakul, A., Wanitchang, J., & Nakawajana, N. (2011). Non-destructive maturity classification of mango based on physical, mechanical and optical properties. Journal of Food Engineering, 105(3), 477–484.CrossRefGoogle Scholar
  46. Wu, D., & Sun, D.-W. (2013). Colour measurements by computer vision for food quality control—A review. Trends in Food Science and Technology, 29(1), 5–20.CrossRefGoogle Scholar
  47. Yashoda, H. M., Prabha, T. N., & Tharanathan, R. N. (2007). Mango ripening—Role of carbohydrases in tissue softening. Food Chemistry, 102, 691–698.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nayeli Vélez-Rivera
    • 1
  • José Blasco
    • 2
  • Jorge Chanona-Pérez
    • 1
  • Georgina Calderón-Domínguez
    • 1
  • María de Jesús Perea-Flores
    • 3
  • Israel Arzate-Vázquez
    • 3
  • Sergio Cubero
    • 2
  • Reynold Farrera-Rebollo
    • 1
  1. 1.Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMéxico, D.F.México
  2. 2.Centro de AgroingenieríaInstituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain
  3. 3.Centro de Nanociencias y Micro y NanotecnologíasInstituto Politécnico NacionalMéxico, D.F.México

Personalised recommendations