Food and Bioprocess Technology

, Volume 7, Issue 2, pp 471–481 | Cite as

Synergistic Effect of Orange Essential Oil or (+)-limonene with Heat Treatments to Inactivate Escherichia coli O157:H7 in Orange Juice at Lower Intensities while Maintaining Hedonic Acceptability

  • Laura Espina
  • Santiago Condón
  • Rafael Pagán
  • Diego García-GonzaloEmail author
Original Paper


This study investigates the effects of different concentrations (50–200 ppm) of (+)-limonene or orange essential oil (EO) when designing thermal treatments to pasteurize orange juice (OJ) at different temperatures (54–60 °C). The addition of 200 ppm of (+)-limonene or orange EO to commercial OJ reduced the heating time to inactivate 5 log10 cycles of the target pathogen Escherichia coli O157:H7 by 3.8 or 2.5 times, respectively. Results demonstrated that EOs and heat acted synergistically. Interestingly, the synergistic effect was constant in the studied range of temperatures. OJ added with 100 ppm of (+)-limonene or 200 ppm of orange EO maintained the sensory acceptance after a heat treatment able to inactivate 5 log10 cycles of E. coli O157:H7. This study opens up the possibility of designing scientific-based combined processes for OJ pasteurization founded on the controlled incorporation of orange EO or (+)-limonene.


Escherichia coli O157:H7 Combined treatments Orange juice Essential oils Limonene Sensory evaluation 



The authors would like to thank Prof. Ignacio Álvarez and Ms. Elisa Gayán for their helpful assistance in the preparation of this manuscript.

Sources of support

This study was financially supported by the CICYT (Project AGL 2009-11660), European Social Fund and Aragonese Departamento de Ciencia, Tecnología y Universidad; and Spanish Ministerio de Educación, Cultura y Deporte that provided L. Espina with a grant to carry out this investigation.


  1. A.I.J.N.-European Fruit Juice Association (2010) Code of practice—reference guidelines. Available at: Accessed 20 September 2012.
  2. Ait-Ouazzou, A., Cherrat, L., Espina, L., Lorán, S., Rota, C., & Pagán, R. (2011). The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innovative Food Science & Emerging Technologies, 12(3), 320–329.CrossRefGoogle Scholar
  3. Arroyo, C., Condón, S., & Pagán, R. (2009). Thermobacteriological characterization of Enterobacter sakazakii. International Journal of Food Microbiology, 136(1), 110–118.CrossRefGoogle Scholar
  4. Baser, K. H. C., & Demirci, F. (2007). Chemistry of essential oils. In R. J. Berger (Ed.), Flavours and fragances: chemistry, bioprocessing and sustainability (pp. 43–86). Berlin: Springer.Google Scholar
  5. Boylston, T. D. (2007). Fruit juices. In Y. H. Hui (Ed.), Handbook of food products manufacturing (pp. 847–866). Hoboken: Wiley.CrossRefGoogle Scholar
  6. Braddock, R. J. (1999). Single strength orange juices and concentrate. In R. J. Braddock (Ed.), Handbook of citrus by-products and processing technology (pp. 53–83). New York: Wiley.Google Scholar
  7. Cebrián, G., Michiels, C. W., Mañas, P., & Condón, S. (2010). Biological approach to modeling of Staphylococcus aureus high-hydrostatic-pressure inactivation kinetics. Applied and Environmental Microbiology, 76(21), 6982–6990.CrossRefGoogle Scholar
  8. Chapman, P. A., Siddons, C. A., Wright, D. J., Norman, P., Fox, J., & Crick, E. (1993). Cattle as a possible source of verocytotoxin-producing Escherichia coli O157 infections in man. Epidemiology and Infection, 111, 439–447.CrossRefGoogle Scholar
  9. Char, C., Guerrero, S., & Alzamora, S. (2010). Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange juice. Food and Bioprocess Technology, 3(5), 752–761.CrossRefGoogle Scholar
  10. Chen, C. S., & Wu, M. C. (1998). Kinetic models for thermal inactivation of multiple pectinesterases in citrus juices. Journal of Food Science, 63(5), 747–750.CrossRefGoogle Scholar
  11. Chiralt, A., Martínez-Monzó, J., Cháfer, T., & Fito, P. (2002). Limonene from citru. In M. Shi & M. L. Maguer (Eds.), Functional foods: biochemical and processing aspects, vol. 2 (pp. 169–187). Boca Raton: CRC Press.Google Scholar
  12. Condón, S., Arrizubieta, M. J., & Sala, F. J. (1993). Microbial heat-resistance determinations by the multipoint system with the thermoresistometer Tr-Sc—improvement of this methodology. Journal of Microbiological Methods, 18, 357–366.CrossRefGoogle Scholar
  13. Condón, S., Palop, A., Raso, J., & Sala, F. J. (1996). Influence of the incubation temperature after heat treatment upon the estimated heat resistance values of spores of Bacillus subtilis. Letters in Applied Microbiology, 22(2), 149–152.CrossRefGoogle Scholar
  14. Espina, L., Somolinos, M., Pagán, R., & García-Gonzalo, D. (2010). Effect of citral on the thermal inactivation of Escherichia coli O157:H7 in citrate phosphate buffer and apple juice. Journal of Food Protection, 73(12), 2189–2196.Google Scholar
  15. Espina, L., Somolinos, M., Lorán, S., Conchello, P., García, D., & Pagán, R. (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control, 22(6), 896–902.CrossRefGoogle Scholar
  16. Espina, L., Somolinos, M., Ait-Ouazzou, A., Condón, S., García-Gonzalo, D., & Pagán, R. (2012). Inactivation of Escherichia coli O157:H7 in fruit juices by combined treatments of citrus fruit essential oils and heat. International Journal of Food Microbiology, 159(1), 9–16.CrossRefGoogle Scholar
  17. FDA (2001) Hazard analysis and critical control point: procedures for the safe and sanitary processing and importing of juice: final rule (21CFR 120).Google Scholar
  18. FDA (Revised 2011) Substances Generally Recognized as Safe (21CFR 182.20 and 21CFR182.60).Google Scholar
  19. Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science & Technology, 19(3), 156–164.CrossRefGoogle Scholar
  20. Fry, J., Martin, G., & Lees, M. (1995). Authentication of orange juice. In P. R. Ashurts (Ed.), Production and packaging of non-carbonated fruit juices and fruit beverages (pp. 1–52). New York: Blackie Academic and Professional.CrossRefGoogle Scholar
  21. Geveke, D. J. (2005). UV inactivation of bacteria in apple cider. Journal of Food Protection, 68(8), 1739–1742.Google Scholar
  22. Gutierrez, J., Barry-Ryan, C., & Bourke, P. (2009). Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components. Food Microbiology, 26(2), 142–150.CrossRefGoogle Scholar
  23. Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 12.CrossRefGoogle Scholar
  24. Jia, M., Howard Zhang, Q., & Min, D. B. (1999). Pulsed electric field processing effects on flavor compounds and microorganisms of orange juice. Food Chemistry, 65(4), 445–451.CrossRefGoogle Scholar
  25. Keyser, M., Műller, I. A., Cilliers, F. P., Nel, W., & Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science & Emerging Technologies, 9(3), 348–354.CrossRefGoogle Scholar
  26. Kgatla, T. E., Howard, S. S., & Hiss, D. C. (2010). The effects of processing and preservation on the sensory qualities of prickly pear juice. World Academy of Science, Engineering and Technology, 68, 861–868.Google Scholar
  27. Koutchma, T., Keller, S., Chirtel, S., & Parisi, B. (2004). Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science & Emerging Technologies, 5(2), 179–189.CrossRefGoogle Scholar
  28. Mackey, B. M. (2000). Injured bacteria. In B.-P. Lund & T. C. Gould (Eds.), The microbiological safety and quality of food (pp. 315–341). Gaithersburg: Aspen.Google Scholar
  29. Mafart, P., Couvert, O., Gaillard, S., & Leguerinel, I. (2002). On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. International Journal of Food Microbiology, 72, 107–113.CrossRefGoogle Scholar
  30. Marin, A. B., Acree, T. E., Hotchkiss, J. H., & Nagy, S. (1992). Gas chromatography-olfactometry of orange juice to assess the effects of plastic polymers on aroma character. Journal of Agricultural and Food Chemistry, 40(4), 650–654.CrossRefGoogle Scholar
  31. Monfort, S., Saldaña, G., Condon, S., Raso, J., & Alvarez, I. (2012). Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiology, 30(2), 393–399.CrossRefGoogle Scholar
  32. Neves M F, Milan P, Trombin V G & Pereira F C. (2011) Market drivers of the global beverage consumption in 2010: opportunities for a new positioning to the juice category. Paper presented at the IFAMA Anual World Symposium, Frankfurt, GermanyGoogle Scholar
  33. Pagan, R., Condon, S., & Sala, F. J. (1997). Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes. Applied and Environmental Microbiology, 63(8), 3225–3232.Google Scholar
  34. Parish, M. E. (2008). Food safety issues and the microbiology of fruit beverages and bottled water. In N. Heredia, I. Wesley, & S. García (Eds.), Microbiologically safe foods (pp. 291–304). Hoboken: Wiley.Google Scholar
  35. Perez-Cacho, P. R., & Rouseff, R. L. (2008). Fresh squeezed orange juice odor: a review. Critical Reviews in Food Science and Nutrition, 48(7), 681–695.CrossRefGoogle Scholar
  36. Pollack SL, Lin B-H & Allshouse J (2003) Characteristics of U.S. orange consumption: electronic outlook eeport from the Economic Research Service. United States Department of Agriculture.Google Scholar
  37. Sampedro, F., Geveke, D. J., Fan, X., & Zhang, H. Q. (2009). Effect of PEF, HHP and thermal treatment on PME inactivation and volatile compounds concentration of an orange juice–milk based beverage. Innovative Food Science & Emerging Technologies, 10(4), 463–469.CrossRefGoogle Scholar
  38. Somolinos, M., García, D., Condón, S., Mackey, B., & Pagán, R. (2010). Inactivation of Escherichia coli by citral. Journal of Applied Microbiology, 108(6), 1928–1939.Google Scholar
  39. Svoboda, K. P., & Greenaway, R. I. (2003). Lemon scented plants. International Journal of Aromatherapy, 13(1), 23–32.CrossRefGoogle Scholar
  40. Vikram, V. B., Ramesh, M. N., & Prapulla, S. G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31–40.CrossRefGoogle Scholar
  41. Williams, C. (1995). Healthy eating: clarifying advice about fruit and vegetables. British Medical Journal, 310(6992), 1453–1455.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Laura Espina
    • 1
  • Santiago Condón
    • 1
  • Rafael Pagán
    • 1
  • Diego García-Gonzalo
    • 1
    Email author
  1. 1.Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de VeterinariaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations