Food and Bioprocess Technology

, Volume 7, Issue 3, pp 821–828 | Cite as

Cronobactersakazakii Inactivation by Microwave Processing

  • Maria C. Pina-Pérez
  • Maria Benlloch-Tinoco
  • Dolores Rodrigo
  • Antonio Martinez
Original Paper

Abstract

Nowadays, current practices at home and childcare settings involved MW heating after powder infant formula milk reconstitution. Microwave (MW) effectiveness for Cronobacter sakazakii inactivation in reconstituted powder infant formula milk was investigated. Power levels in the range 400–900 W were tested during exposure times ranging from 0 to 120 s. Power levels of 800 and 900 W reduced the C. sakazakii initial population to undetectable levels (≥8 log10 cycles), reaching maximum temperatures of 78.8 ± 2.3 °C and 88.1 ± 1.5 °C, respectively. A post-treatment storage study (5 °C, 24 h) was completed to determine the recovery or death of C. sakazakii damaged and survival cells. It was observed that lowest MW intensity treatments (power level and treatment time) provide the highest percentages of injured cells. Moreover, these high percentages of damaged cells progressively die during refrigerated storage (up to 24 h). Microbial reduction levels higher or equal to 5 log10 cycles were reached due to the sublethal damaged cell death.

Keywords

Microwave processing Cronobacter sakazakii Refrigeration Sublethal damage Reconstituted powder infant formula milk 

Notes

Acknowledgments

The authors are grateful to the Ministry of Economy and Competitiveness for providing financial support by means of CYCIT project AGL2010-22206-C02, and to Generalitat Valenciana I+D+I emergent research groups financial support in project GV/2010/064.

References

  1. Al-Holy, M. A., Lin, M., Abu-Ghoush, M. M., Al-Qadiri, H. M., & Rasco, B. A. (2009). Thermal resistance, survival and inactivation of Enterobacter sakazakii (Cronobacter spp.) in powdered and reconstituted infant formula. Journal of Food Safety, 29, 287–14.CrossRefGoogle Scholar
  2. Arroyo, C., Condón, S., & Pagán, R. (2009). Thermological characterization of Enterobacter sakazakii. International Journal of Food Microbiology, 136, 110–118.CrossRefGoogle Scholar
  3. Arroyo, C., Somolinos, M., Cebrián, G., Condón, S., & Pagán, R. (2010). Pulsed electric fields cause sublethal injuries in the outer membrane of Enterobacter sakazakii facilitating the antimicrobial activity of citral. Letters in Applied Microbiology, 51, 525–531.CrossRefGoogle Scholar
  4. Arroyo, C., Gayán, E., Pagán, R., & Condón, R. (2012). UV-C Inactivation of Cronobacter sakazakii. Foodborne Pathogens and Disease, 9(10), 1–8.CrossRefGoogle Scholar
  5. Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: Principles and overview. Chemical Engineering and Processing, 46, 584–602.CrossRefGoogle Scholar
  6. Barbosa-Cánovas, G. V., & Bermudez-Aguirre D. (2010). Pasteurization of milk with pulsed electric fields. In M. Griffiths (Ed.), Improving the safety and quality of milk, vol. 1. Cambridge, UK: Woodhead Publishing.Google Scholar
  7. CAC (Codex Alimentarius Comission). (2004). Report of the 36th session of the Codex Committee on Food Hygiene ALINORM 04/27/13. Appendix III: Definition to be included in the procedure manualGoogle Scholar
  8. Cañumir, J. A., Celis, J. E., de Brujin, J., & Vidal, L. V. (2002). Pasteurization of Apple Juice by using Microwaves. Lebensm-Wiss. u -Technology, 35, 389–392.CrossRefGoogle Scholar
  9. Cha-um, W., Rattanadecho, P., & Pakdee, W. (2011). Experimental and numerical analysis of Microwave Heating of Water and Oil using a rectangular wave guide: Influence of sample sizes, positions, and microwave power. Food Bioprocess and Technology, 4, 544–558.CrossRefGoogle Scholar
  10. Carletti, C, & Cattaneo, A. (2008). A: Home preparation of powdered infant formula: is it safe? Acta Paediatrica, 97, 1131–2.Google Scholar
  11. Dixon, J. J., Burd, D. A. R., & Roberts, D. G. V. O. (1997). Severe burns resulting from an exploding teat on a bottle of infant formula milk heated in a microwave oven. Burns, 23(3), 268–269.CrossRefGoogle Scholar
  12. European Comission Regulation (EC). N0 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs (OJ L 338, 22.12.2005, p.1).Google Scholar
  13. Edelson-Mammel, S. G., & Buchanan, R. L. (2004). Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. Journal of Food Protection, 67, 60–63.Google Scholar
  14. ESPGHAN Committee on Nutrition. (2004). Preparation and Handling of powdered Infant Formula: A Commentary by the ESPGHAN Committee on Nutrition. Journal of Pediatrics Gastroenterology and Nutrition, 39, 320–2.CrossRefGoogle Scholar
  15. FAO/WHO (2004). Food and Agriculture Organization/World Health Organization activities on microbiological risk assessment. Enterobacter sakazakii and other microorganisms in powdered infant formula. Meeting report. Microbiological risk assessment series: 6.Google Scholar
  16. FAO/WHO. (2006). Comisión del Codex Alimentarius. Anteproyecto de código de prácticas de higiene para la fórmula en polvo para lactantes y niños pequeños en el trámite 3. CX/FH 06/38/7.Google Scholar
  17. Friedemann, M. (2007). Review. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). International Journal of Food Microbiology, 116, 1–10.CrossRefGoogle Scholar
  18. Forsythe, S. J. (2002). The microbiological risk assessment of food. Chapter 3. Risk Analysis. Oxford: Blackwell Publishing.CrossRefGoogle Scholar
  19. Fujikawa, H., Ushioda, H., & Kudo, Y. (1992). Kinetics of Escherichia coli destruction by microwave irradiation. Applied and Environmental Microbiology, 58(3), 920–924.Google Scholar
  20. Hebbar, H.U., & Rastogi, N.K. (2012). Chapter 12—Microwave Heating of Fluid Foods. In: Novel Thermal and Non-Thermal Technologies for Fluid Foods, (pp. 369−409).Google Scholar
  21. Heddleson, R. A., & Doores, S. (1994). Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens—a review. Journal of Food Protection, 57(11), 1025–1037.Google Scholar
  22. Huang, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea. Journal of Food Engineering, 78, 687–692.CrossRefGoogle Scholar
  23. IDF. (1994). Recommendations for the Hygienic Mnufacture of Milk and Milk based products. Document No. 292 International Dairy Federation, Brussels.Google Scholar
  24. Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299.CrossRefGoogle Scholar
  25. Iversen, C., Lane, M., & Forsythe, S. J. (2004). The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Letters in Applied Microbiology, 38, 378–382.Google Scholar
  26. Jang, H. I., & Rhee M. S. (2009). Inhibitory effect of caprylic acid and mild heat on Cronobacter spp. (Enterobacter sakazakii) in reconstituted infant formula and determination of injury by flow cytometry. International Journal of Food Microbiology, 133, 113–120.Google Scholar
  27. Kandhai, M. C., Reij, M. W., Grognou, C., van Shothorst, M., Gorris, L. G. M., & Zwietering, M. H. (2006). Effects of Preculturing conditions on lag time and specific growth rate of Enterobacter sakazakii in reconstituted powdered infant formula. Applied and Environmental Microbiology, 72(4), 2721–2729.CrossRefGoogle Scholar
  28. Kim, S. H., & Park, J. H. (2007). Thermal resistance and inactivation of Enterobacter sakazakii isolates during rehydration of powdered infant formula. Journal of Microbiology and Biotechnology, 17, 364–368.Google Scholar
  29. Kim, J. B., Park, Y. B., Lee, M. J., Kim, K. C., Huh, J. W., Kim, D. H., et al. (2008). Effect of hot water and microwave heating on the inactivation of Enterobacter sakazakii in reconstituted powdered infant formula and sunsik. Journal of Food Hygiene and Safety, 23(2), 157–162.Google Scholar
  30. Kindle, G., Busse, A., Kampa, D., Meyer-Koenig, U., & Daschner, F. D. (1996). Killing activity of microwaves in milk. Journal of Hospital Infection, 33, 273–278.CrossRefGoogle Scholar
  31. Latorre, M. E., Bonelli, P. R., Rojas, A. M., & Gerschenson, L. N. (2012). Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality. Journal of Food Engineering, 109, 676–684.CrossRefGoogle Scholar
  32. Lau, M. H., & Tang, J. (2002). Pasteurization of pickled asparagus using 915 MHz microwaves. Journal of Food Engineering, 51(4), 283–290.Google Scholar
  33. Matsui, K. N., Gut, J. A. W., de Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88, 169–176.CrossRefGoogle Scholar
  34. Nazarowec-White, M., & Farber, J. M. (1997). Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Letters in Applied Microbiology, 24, 9–13.CrossRefGoogle Scholar
  35. Nicolaï, B. (1998). Optimal control of microwave combination ovens for food heating. 3rd Karlsruhe Nutrition Symposium. European Research towards Safer and Better Food. Review and Transfer Congress. Proceedings Part 2 Edited by V. Gaukeland W.E.L. Spieß. pp. 328–332.Google Scholar
  36. Ohlsson, T. (2003). Domestic use of microwave ovens. Cooking, 1627–1633.Google Scholar
  37. Osaili, T., & Forsythe, S. (2009). Dessication resistance and persistance of Cronobacter species in infant formula. International Journal of Food Microbiology, 136(2), 214–220.Google Scholar
  38. Osaili, T. M., Shaker, R. R., Al-Haddaq, M. S., Al-Nabulsi, A. A., & Holley, R. A. (2009). Heat resistance of Cronobacter species (Enterobacter sakazakii) in milk and special feeding formula. Journal of Applied Microbiology, 107, 928–935.CrossRefGoogle Scholar
  39. Pina-Pérez, M. C., Rodrigo, D., & Martinez, A. (2009). Sub-lethal damage in Cronobacter sakazakii subsp. Sakazakii cells after different pulsed electric field treatments in infant formula milk. Food Control, 20, 1145–1150.CrossRefGoogle Scholar
  40. Puczynski, M., Rademaker, D., & Gatson, R. L. (1983). Burn injury related to the improper use of a microwave oven. Pediatrics, 72(5), 714–715.Google Scholar
  41. Rodrigo, D., Zúñiga, M., Rivas, A., & Martinez, A. (2007). Adaptation potential of micro-organisms treated by pulsed electric fields. Food preservation by pulsed electric fields: From research to application. Edited by H L M Lelieveld, formerly Unilever R&D, S Notermans, Foundation Food Micro & Innovation and S W H de Haan, Technical University of Delft, The Netherlands.Google Scholar
  42. Salazar-González, C., San Martín-González, M. F., López-Malo, A., & Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food Bioprocess and Technology, 5, 31–46.CrossRefGoogle Scholar
  43. Shaker, R. R., Osaili, T. M., All-Hasan, A. S., Ayyash, M. M., Forsythe, S. J. (2008). Effect of desiccation, starvation, heat and cold stresses on the thermal resistance of Enterobacter sakazakii in rehydrated infant milk formula. Journal of Food Science, 73, 354–359.Google Scholar
  44. Sieber, R., Eberhard, P., & Gallmann, P. U. (1996). Heat treatment of milk in domestic microwave ovens. International Dairy Journal, 6, 213–246.Google Scholar
  45. Simmons, B. P., Gelfand, M. S., Haas, M., Metts, L., & Ferguson, J. (1989). Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infection Control and Hospital Epidemiology, 10, 398–401.CrossRefGoogle Scholar
  46. Swain, M., & James S. (2010). The microwave processing of foods. Chapter 12. Factors that affect heating performance and development of heating/cooking in domestic and commercial microwave ovens. (pp. 221–241) Woodhead Publishing in Food Science and Technology. Part III. Measurement and process controlGoogle Scholar
  47. Tang, Z., Mikhaylenko, G., Liu, F., Mah, J. H., Pandit, R., Younce, F., et al. (2008). Microwave sterilization of sliced beef in gravy 7-oz trays. Journal of Food Engineering, 89(4), 375–383.CrossRefGoogle Scholar
  48. Thompson, J. S., & Thompson, A. (1990). In-home pasteurization of raw goat’s milk by microwave treatment. International Journal of Food Microbiology, 10, 59–64.CrossRefGoogle Scholar
  49. Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials—a review. Food Bioprocess and Technology, 3, 161–171.CrossRefGoogle Scholar
  50. William, M. D., Sando, C., Keith, M. D., Gallaher, J., Bradley, M. D., & Rodgers, M. (1984). Risk factors for microwaves injuries in infants. Journal of Pediatrics, 105(6), 864–867.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maria C. Pina-Pérez
    • 1
  • Maria Benlloch-Tinoco
    • 2
  • Dolores Rodrigo
    • 1
  • Antonio Martinez
    • 1
  1. 1.Departamento Conservación y CalidadInstituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC)PaternaSpain
  2. 2.Departamento Tecnología de Alimentos, Grupo Investigación e Innovación en AlimentosUniversidad Politécnica de ValenciaCamino de Vera, s/nSpain

Personalised recommendations