Food and Bioprocess Technology

, Volume 7, Issue 2, pp 496–505 | Cite as

Effect of Salt and Liver/Fat Ratio on Viscoelastic Properties of Liver Paste and Its Intermediates

  • Liselot SteenEmail author
  • Ilse Fraeye
  • Eveline De Mey
  • Olivier Goemaere
  • Hubert Paelinck
  • Imogen Foubert
Original Paper


The effect of salt and liver/fat ratio on the viscoelastic characteristics of liver paste and its intermediates (liver batter and liver paste batter) were evaluated by applying dynamic oscillatory tests in order to obtain detailed insight into the structural organisation of those products and how the characteristics of the intermediates are related to those of the end product. Liver paste batters were prepared at liver/fat ratios of 35/35 (w/w) and 20/50 (w/w). Salt was added at 0 and 1.8 % at each ratio. Stress sweeps and frequency sweeps were executed to characterise the viscoelastic properties of liver batter, liver paste batter and liver paste. Both intermediates and liver paste were characterised as weak gel-like emulsions with G′ greater than G″. G′ and G″ of liver paste were higher in magnitude compared with both intermediates due to structure building during pasteurisation and cooling. Generally, the values of the viscoelastic parameters of liver paste batter and liver paste increased with the addition of salt. With salt, a stronger and more stable liver paste was obtained. This effect may be attributed to solubilisation of salt soluble proteins, making more liver proteins available to act as emulsifier. However, salt affected the viscoelastic properties of liver batter in the opposite way: a weaker structure was formed with salt. A higher liver/fat ratio (35/35 versus 20/50) only increased the viscoelastic properties of liver paste batter while liver paste was not affected. This is probably due to the crystallisation of the fat in the liver paste with a high fat/liver ratio, which besides the liver proteins, also aid to structure building of liver paste. However, a higher liver/fat ratio did increase the critical stress (σ c) in both liver paste batter and liver paste with the formation of a more stable structure.


Liver pâté Rheological properties Salt Liver/fat ratio Structure Meat emulsion 



The authors acknowledge the financial support from the Research Council of the Katholieke Universiteit Leuven, in particular the Industrial Research Fund and the Fund for Stimulation of Scientific Research for associated technical universities. Kristof Brijs and Peter Van Puyvelde are acknowledged for their useful comments.


  1. Allais, I. (2010). Emulsification. In F. Toldrá (Ed.), Handbook of meat processing (pp. 143–168). Ames: Blackwell.CrossRefGoogle Scholar
  2. Álvarez, D., Xiong, Y. L., Castillo, M., Payne, F. A., & Garrido, M. D. (2012). Textural and viscoelastic properties of pork frankfurters containing canola–olive oils, rice bran, and walnut. Meat Science, 92, 8–15.CrossRefGoogle Scholar
  3. Atughonu, A. G., Zayas, J. F., Herald, T. J., & Harbers, L. H. (1998a). Thermo-rheological properties and cooking yield of sausage-type products as affected by levels of fat and added-water. Journal of Food Quality, 21, 129–143.CrossRefGoogle Scholar
  4. Atughonu, A. G., Zayas, J. F., Herald, T. J., & Harbers, L. H. (1998b). Thermo-rheology, quality characteristics, and microstructure of frankfurters prepared with selected plant and milk additives. Journal of Food Quality, 21, 223–238.CrossRefGoogle Scholar
  5. Augusto, P. E. D., Falguera, V., Cristianni, M., & Ibarz, A. (2011). Viscoelastic properties of tomato juice: applicability of the Cox–Merz rule. Food and Bioprocess Technology. doi: 10.1007/s11947-011-0655-y.
  6. Barreto, G., Carballo, J., Fernández-Martin, F., & Jiménez Colmenero, F. (1996). Thermal gelation of meat batters as function of type and level of fat and protein content. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 202, 211–214.CrossRefGoogle Scholar
  7. Bell, A., Gordon, M. H., Jirasubkunakorn, W., & Smith, K. W. (2007). Effects of composition on fat rheology and crystallization. Food Chemistry, 101, 799–805.CrossRefGoogle Scholar
  8. Bruno, M., & Moresi, M. (2004). Viscoelastic properties of Bologna sausages by dynamic methods. Journal of Food Engineering, 63, 291–298.CrossRefGoogle Scholar
  9. Burge, D. L., & Acton, J. C. (1984). Rheological properties of comminuted meat batters and the relationship to constituent interactions. Journal of Food Technology, 19, 719–724.Google Scholar
  10. Carreau, P. J., Cotton, F., Citerne, G. P., & Moan, M. (2002). Rheological properties of concentrated suspensions: application to foodstuffs. In J. Welti-Chanes, G. V. Barbosa-Canovas, & J. M. Aguilera (Eds.), Engineering and food for the 21st century (pp. 327–346). Boca Raton: CRC Press.Google Scholar
  11. Chattong, U., Apichartsrangkoon, A., & Bell, A. E. (2007). Effects of hydrocolloid addition and high pressure processing on the rheological properties and microstructure of a commercial ostrich meat product “Yor” (Thai sausage). Meat Science, 76, 548–554.CrossRefGoogle Scholar
  12. Cheong, S. H., & Fischer, A. (1991). Feinzerkleinerte Leberwurst: Wirkungsweise und Optimierung von Emulgatoren, Teil 1. Fleischwirtschaft, 71, 1148–1158.Google Scholar
  13. Cheong, S. H., & Fischer, A. (1992). Feinzerkleinerte Leberwurst: Wirkungsweise und Optimierung von Emulgatoren, Teil 2. Fleischwirtschaft, 72, 142–149.Google Scholar
  14. Cheong, S. H., & Fischer, A. (1993). Rasterelektronenmikroscopische Deutung der Wirkungsweise von Emulgatoren auf die Fettstabilisierung bei feinzerkleinerter Leberwurst. Fleischwirtschaft, 73, 677–683.Google Scholar
  15. D’Arrigo, M., Hoz, L., Cambero, I., Lopze-Bote, C. J., Pin, C., & Ordóñez, J. A. (2004). Production of n-3 fatty acid enriched pork liver pâté. Lebensmittel-Wissenschaft und Technologie, 37, 585–591.Google Scholar
  16. Delgado-Pando, G., Cofrades, S., Rodríguez-Salas, L., & Jiménez-Colmenero, F. (2011). A healthier oil combination and konjac gel as functional ingredients in low-fat pork liver pâté. Meat Science, 88, 241–284.CrossRefGoogle Scholar
  17. Delgado-Pando, G., Cofrades, S., Ruiz-Capillas, C., Triki, M., & Jiménez-Colmenero, F. (2012). Low-fat pork liver pâtés enriched with n-3 PUFA/konjac gel: dynamic rheological properties and technological behavior during chill storage. Meat Science, 92, 44–52.CrossRefGoogle Scholar
  18. Desmond, E. (2006). Reducing salt: a challenge for the meat industry. Meat Science, 74, 188–196.CrossRefGoogle Scholar
  19. Fischer, A., Cheong, S. H., & Jaud, D. (1991). Finely comminuted liver sausage. How the normal commercial emulsifiers work. Fleischwirtschaft, 71, 780–783.Google Scholar
  20. Flores, M., Giner, E., Fiszman, S. M., Salvador, A., & Flores, J. (2007). Effect of a new emulsifier containing sodium stearoyl-2-lactylate and carrageenan on the functionality of meat emulsion systems. Meat Science, 76, 9–18.CrossRefGoogle Scholar
  21. Gamonpilas, C., Pongjaruvat, W., Fuongfuchat, A., Methacanon, P., Seetapan, N., & Thamjedsada, N. (2011). Physicochemical and rheological characteristics of commercial chilli sauces as thickened by modified starch or modified starch/xanthan mixture. Journal of Food Engineering, 105(2), 233–240.CrossRefGoogle Scholar
  22. Hamm, R. (1986). Functional properties of the myofibrillar system and their measurements. In P. J. Bechtel (Ed.), Muscle as food (pp. 135–200). New York: Academic.CrossRefGoogle Scholar
  23. Hammer, G. F. (1981). Zur Verbesserung der Leberwurstherstellung. Fleischwirtschaft, 61, 524–531.Google Scholar
  24. Hammer, G. F. (1988a). Technologische Wirkung von veresterten Monoglyceriden und Ei bei feinzerkleinerten Leberwurst. Fleischwirtschaft, 68, 1224–1231.Google Scholar
  25. Hammer, G. F. (1988b). Technologische Wirkung von Caseinat und Fremdwasser bei fein zerkleinerten Leberwurst. Fleischwirtschaft, 68, 1336–1347.Google Scholar
  26. Hilmes, C., Cheong, S. H., & Fischer, A. (1993). Microstructure and stability of liver sausage as influenced by liver content. Die Fleischerei, 44, III–V.Google Scholar
  27. Hong, G. P., Lee, S., & Min, S. G. (2004a). Effects of replacement pork backfat with soybean oil in the quality characteristics of spreadable liver sausage. Food Science and Biotechnology, 13(1), 51–56.Google Scholar
  28. Hong, G. P., Lee, S., & Min, S. G. (2004b). Effects of substituted levels of added water for fat on the quality characteristics of spreadable liver sausage. Food Science and Biotechnology, 13(4), 397–402.Google Scholar
  29. Jaud, D., Schneider, K., Hilmes, C., Cheong, S. H., & Fisher, A. (1998). Feinzerkleinerte Leberwurst: Einfluss verschiedener Fette auf die Stabilität. Teil 3: Fettseparation der Endprodukte unter Berücksichtiging der Standzeit. Fleischwirstschaft, 78, 664–670.Google Scholar
  30. Jimenez-Colmenero, F., Cofrades, S., Lopez-lopez, I., Ruiz-Capillas, C., Pintado, T., & Solas, M. T. (2010). Technological and sensory characteristics of reduced/low-fat, low-salt frankfurters as affected by the addition of konjac and seaweed. Meat Science, 84(3), 356–363.CrossRefGoogle Scholar
  31. Kaack, K., & Pedersen, L. (2005). Low-energy and high-fibre liver pate processed using potato pulp. European Food Research and Technology, 220, 278–282.CrossRefGoogle Scholar
  32. Kaack, K., Laerke, H. N., & Meyer, A. S. (2006). Liver pate enriched with dietary fibre extracted from potato fibre as fat substitutes. European Food Research and Technology, 223, 267–272.CrossRefGoogle Scholar
  33. Karaman, S., Yilmaz, M. T., Dogan, M., Yetim, H., & Kayacier, A. (2011). Dynamic oscillatory shear properties of O/W system meat emulsions: linear viscoelastic analysis for effect of temperature and oil concentration on protein network formation. Journal of Food Engineering, 107, 241–252.CrossRefGoogle Scholar
  34. Katsaras, K., Linke, H., & Hammer, G. (1987). Morphology of spreadable sausages of liver sausage type. Fleischwirtschaft, 67, 949–951.Google Scholar
  35. Lin, K.-W., & Huang, C.-Y. (2008). Physicochemical and textural properties of ultrasound-degraded konjac flour and their influences on the quality of low-fat Chinese-style sausage. Meat Science, 79, 615–622.CrossRefGoogle Scholar
  36. Lippacher, A., Müller, R. H., & Mäder, K. (2004). Liquid and semisolid SLN™ dispersions for topical application: rheological characterization. European Journal of Pharmaceutics and Biopharmaceutics, 58, 561–567.CrossRefGoogle Scholar
  37. Ma, C.-Y., Yiu, S. H., & Khanzada, G. (1991). Rheological and structural properties of wiener-type products substituted with vital wheat gluten. Journal of Food Science, 56(1), 228–233.CrossRefGoogle Scholar
  38. Marangoni, A. G., & Hartel, R. W. (1998). Visualization and structural analysis of fat crystal networks. Food Technology, 52(9), 46–51.Google Scholar
  39. Marangoni, A. G., & Tang, D. (2008). Modeling the rheological properties of fats: a perspective and recent advances. Food Biophysics, 3, 113–119.CrossRefGoogle Scholar
  40. Martin, D., Ruiz, J., Kivikari, R., & Puolanne, E. (2008). Partial replacement of pork fat by conjugated linoleic acid and/or olive oil in liver pâtés: effect of physicochemical characteristics and oxidative stability. Meat Science, 80, 496–504.CrossRefGoogle Scholar
  41. Martinez, B., Miranda, J. M., Vázquez, B. I., Fente, C. A., Franco, C. M., Rodríguez, J. L., & Cepada, A. (2012). Development of a hamburger patty with healthier lipid formulation and study of its nutritional, sensory, and stability properties. Food and Bioprocess Technology, 5(1), 200–208.CrossRefGoogle Scholar
  42. Morales-Irigoyen, E. E., Severiano-Pérez, P., Rodriguez-Huezo, M. E., & Totosaus, A. (2012). Textural, physicochemical and sensory properties compensation of fat replacing in pork liver pâté incorporating emulsified canola oil. Food Science and Technology International, 18(4), 413–421.CrossRefGoogle Scholar
  43. Moura, M. J., Figueredo, M. M., & Gil, M. H. (2007). Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules, 8, 3823–3829.CrossRefGoogle Scholar
  44. Nuckles, R. O., Smith, D. M., & Merkel, R. A. (1990). Meat by-product protein composition and functional properties in model systems. Journal of Food Science, 55, 640–643.CrossRefGoogle Scholar
  45. Perlo, F., Gago-Gago, A., Rosmini, M., Cervera-Perez, R., Perez-Alvarez, J., Pagan-Moreno, M., Lopez-Santovena, F., & Aranda-Catala, V. (1994). Modification of physico-chemical and colour parameters during the marketing of ‘paté’. Meat Science, 41(3), 325–333.CrossRefGoogle Scholar
  46. Pyrcz, J., Pietronczyck, K., Kowalski, R., & Danyluk, B. (2005). Functions of emulsifiers in developing quality homogenized liver sausage type of products. Medycyna Weterynaryjna, 61(10), 1169–1174.Google Scholar
  47. Pyrcz, J., Pietronczyck, K., Kowalski, R., & Danyluk, B. (2006). The effect of species origin of liver on quality of liver pate type sausage. Electronic Journal of Polish Agricultural Universities, 9(2).Google Scholar
  48. Ross-Murphy, S. B. (1994). Rheological methods. In M. Ross (Ed.), Physical techniques for the study of food biopolymers (pp. 343–392). New York: Blackie Academic Professional.CrossRefGoogle Scholar
  49. Russel, E. A., Lynch, A., Lynch, P. B., & Kerry, J. P. (2003). Quality and shelf life of duck liver pâté as influenced by dietary supplementation with α-tocopheryl acetate and various fat sources. Journal of Food Science, 68, 799–802.CrossRefGoogle Scholar
  50. Schneider, K., Jaud, D., Hilmes, C., Cheong, S. H., & Fischer, A. (1998). Feinzerkleinerte Leberwurst: Einfluss verschiedener Fette auf die stabilität Teil 2: Destabilisierung der Rohmassen unter Berücksichtiging der Standzeit. Fleischwirtschaft, 78, 464–470.Google Scholar
  51. Su, Y. K., Bowers, J. A., & Zayas, J. F. (2000). Physical characteristics and microstructure of reduced-fat frankfurters as affected by salt and emulsified fats stabilized with nonmeat proteins. Journal of Food Science, 65, 123–128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Liselot Steen
    • 1
    • 2
    • 3
    Email author
  • Ilse Fraeye
    • 1
    • 2
    • 3
  • Eveline De Mey
    • 1
    • 3
  • Olivier Goemaere
    • 1
    • 3
  • Hubert Paelinck
    • 1
    • 3
  • Imogen Foubert
    • 2
    • 3
  1. 1.KAHO Sint-LievenResearch Group for Technology and Quality of Animal ProductsGentBelgium
  2. 2.Katholieke Universiteit Leuven Kulak, Foods and LipidsKortrijkBelgium
  3. 3.Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S)Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations