Food and Bioprocess Technology

, Volume 7, Issue 1, pp 105–113 | Cite as

Storage Stability of Whole and Nibbed, Conventional and High Oleic Peanuts (Arachis hypogeae L.)

  • Jonathan D. Wilkin
  • Ian P. Ashton
  • Louise M. Fielding
  • Arthur S. TathamEmail author
Original Paper


Peanuts are increasingly being used as nibbed ingredients in cereal bars, confectionery and breakfast cereals. However, studies on their oxidative stability in this format are limited. Storage trials to determine the stability to oxidation were carried out on whole and nibbed kernels of conventional (CP) and high oleic (HOP) peanuts, with respect to temperature and modified atmosphere packaging. HOP exhibited the highest oxidative stability, with a lag phase in whole kernels of 12–15 weeks before significant oxidation occurred. HOP also showed higher levels of intrinsic antioxidants, a trolox equivalent antioxidant capacity (TEAC) of 70 mMol equivalence and radical scavenging percentage (RSP) of 99.8 % at the beginning of storage trials, whereas CP showed values of 40 mMol and 81.2 %, respectively. The intrinsic antioxidants at the beginning of these storage trials were shown to affect the peroxide value (PV), where RSP and TEAC decreased, and PV increased. Therefore, in peanuts the processing format (nibbed or whole) had the highest influence on susceptibility of lipid oxidation, highest to lowest importance: processing format > temperature > atmospheric conditions.


Antioxidants Peanut Storage Lipid oxidation 



Association of Analytical Chemists


Conventional peanuts


High oleic peanuts


Low density lipoprotein


Monounsaturated fatty acids


Peroxide value


Radical scavenging percentage




Trolox equivalent antioxidant capacity



The authors thank Drs. Lalage Sanders, Mike Dunn and Keith Morris for assistance with the statistical analyses.

Conflict of interest

There are no conflicts of interest in this research paper.


  1. Awad, A. B., Chan, K. C., Downie, A. L., & Fink, C. S. (2000). Peanuts as a source of β-sitosterol, a sterol with anticancer properties. Nutrition and Cancer, 36(2), 238–241.CrossRefGoogle Scholar
  2. Blomhoff, R., Carlsen, M. H., Andersen, L. F., & Jacobs, D. R., Jr. (2006). Health benefits of nuts: potential role of antioxidants. British Journal of Nutrition, 96(Suppl 2), S52–S60.CrossRefGoogle Scholar
  3. Bolton, G., & Sanders, T. (2002). Effect of roasting oil composition on the stability of roasted high-oleic peanuts. Journal of the American Oil Chemists' Society, 79(2), 129–132.CrossRefGoogle Scholar
  4. Buettner, G. R. (1993). The pecking order of free radicals and antioxidants: lipid peroxidation, [alpha]-tocopherol, and ascorbate. Archives of Biochemistry and Biophysics, 300(2), 535–543.CrossRefGoogle Scholar
  5. Chang, J.-C., Lai, Y.-H., Djoko, B., Wu, P.-L., Liu, C.-D., Liu, Y.-W., et al. (2006). Biosynthesis enhancement and antioxidant and anti-inflammatory activities of peanut (Arachis hypogaea L.) arachidin-1, arachidin-3, and isopentadienylresveratrol. Journal of Agricultural and Food Chemistry, 54(26), 10281–10287.CrossRefGoogle Scholar
  6. Craft, B., Kosińska, A., Amarowicz, R., & Pegg, R. (2010). Antioxidant properties of extracts obtained from raw, dry-roasted, and oil-roasted US peanuts of commercial importance. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), 65(3), 311–318.CrossRefGoogle Scholar
  7. Dean, L. L., Davis, J. P., & Sanders, T. H. (2011). Groundnut (peanut) oil. Vegetable Oils in Food Technology (pp. 225–242). Chichester: Wiley-Blackwell.Google Scholar
  8. Ebrahem, K. S., Richardson, G. D., & Tetley, R. M. (1994). Effects of storage temperature, kernel intactness, and roasting temperature on Vitamin E, fatty acids and peroxide value of Hazelnuts. Acta Horticulturae, 351, 677–684.Google Scholar
  9. Galvao, L. C. A., Lopez, A., & Williams, H. L. (1976). Essential mineral elelments in peanuts and peanut butter. Journal of Food Science, 41(6), 1305–1307.CrossRefGoogle Scholar
  10. Goffman, F. D., & Möllers, C. (2000). Changes in tocopherol and plastochromanol-8 contents in seeds and oil of oilseed rape (Brassica napus L.) during storage as influenced by temperature and air oxygen. Journal of Agricultural and Food Chemistry, 48(5), 1605–1609.CrossRefGoogle Scholar
  11. Hashim, I., Koehler, P., & Eitenmiller, R. (1993). Tocopherols in runner and Virginia peanut cultivars at various maturity stages. Journal of the American Oil Chemists' Society, 70(6), 633–635.CrossRefGoogle Scholar
  12. Hwang, J.-Y., Shue, Y.-S., & Chang, H.-M. (2001). Antioxidative activity of roasted and defatted peanut kernels. Food Research International, 34(7), 639–647.CrossRefGoogle Scholar
  13. Isleib, T. G., Pattee, H. E., Sanders, T. H., Hendrix, K. W., & Dean, L. O. (2006). Compositional and sensory comparisons between normal- and high-oleic peanuts. Journal of Agricultural and Food Chemistry, 54(5), 1759–1763.CrossRefGoogle Scholar
  14. Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218–220.CrossRefGoogle Scholar
  15. Jensen, P. N., Danielsen, B., Bertelsen, G., Skibsted, L. H., & Andersen, M. L. (2005). Storage stabilities of pork scratchings, peanuts, oatmeal and muesli: comparison of ESR spectroscopy, headspace-GC and sensory evaluation for detection of oxidation in dry foods. Food Chemistry, 91(1), 25–38.CrossRefGoogle Scholar
  16. Jiang, R., Manson, J. E., Stampfer, M. J., & Liu, S. (2002). Peanut and peanut butter consumption and risk of type 2 diabetes in women. Journal of the American Medical Association, 288(20), 2554–2560.CrossRefGoogle Scholar
  17. Jonnala, R., Dunford, N., & Dashiell, K. (2005). New high-oleic peanut cultivars grown in the Southwestern United States. Journal of the American Oil Chemists' Society, 82(2), 125–128.CrossRefGoogle Scholar
  18. Jonnala, R. S., Dunford, N. T., & Dashiell, K. E. (2006). Tocopherol, phytosterol and phospholipid compositions of new high oleic peanut cultivars. Journal of Food Composition and Analysis, 19(6–7), 601–605.CrossRefGoogle Scholar
  19. Kornsteiner, M., Wagner, K.-H., & Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. Food Chemistry, 98(2), 381–387.CrossRefGoogle Scholar
  20. Kris-Etherton, P. M., Pearson, T. A., Wan, Y., Hargrove, R. L., Moriarty, K., Fishell, V., et al. (1999). High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. The American Journal of Clinical Nutrition, 70(6), 1009–1015.Google Scholar
  21. Kulås, E., & Ackman, R. (2001). Properties of α-, γ-, and δ-tocopherol in purified fish oil triacylglycerols. Journal of the American Oil Chemists' Society, 78(4), 361–367.CrossRefGoogle Scholar
  22. Lloyd, R. V., Hanna, P. M., & Mason, R. P. (1997). The Origin of the Hydroxyl Radical Oxygen in the Fenton Reaction. Free Radical Biology & Medicine, 22(5), 885–888.CrossRefGoogle Scholar
  23. Maskan, M., & Karataş, Ş. (1998). Fatty acid oxidation of pistachio nuts stored under various atmospheric conditions and different temperatures. Journal of the Science of Food and Agriculture, 77(3), 334–340.CrossRefGoogle Scholar
  24. Maskan, M., & Karataş, Ş. (1999). Storage stability of whole-split pistachio nuts (Pistachia vera L.) at various conditions. Food Chemistry, 66(2), 227–233.CrossRefGoogle Scholar
  25. Maté, J. I., Saltveit, M. E., & Krochta, J. M. (1996). Peanut and walnut rancidity: effects of oxygen concentration and relative humidity. Journal of Food Science, 61(2), 465–469.CrossRefGoogle Scholar
  26. McCormick, P. A., & O'Keefe, C. (2001). Improving prognosis following a first variceal haemorrhage over four decades. Gut, 49(5), 682–685.CrossRefGoogle Scholar
  27. Mexis, S. F., Badeka, A. V., Riganakos, K. A., Karakostas, K. X., & Kontominas, M. G. (2009). Effect of packaging and storage conditions on quality of shelled walnuts. Food Control, 20(8), 743–751.CrossRefGoogle Scholar
  28. Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211–219.Google Scholar
  29. Moore, K. M., & Knauft, D. A. (1989). The inheritance of high oleic acid in peanut. Cary: Oxford University Press.Google Scholar
  30. Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68.CrossRefGoogle Scholar
  31. Pattee, H. E., Isleib, T. G., Moore, K. M., Gorbet, D. W., & Giesbrecht, F. G. (2002). Effect of high-oleic trait and paste storage variables on sensory attribute stability of roasted peanuts. Journal of Agricultural and Food Chemistry, 50(25), 7366–7370.CrossRefGoogle Scholar
  32. Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., et al. (2003). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. The Journal of Nutrition, 133(9), 2812–2819.Google Scholar
  33. Porter, N. A., Caldwell, S. E., & Mills, K. A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. Lipids, 30(4), 277–290.CrossRefGoogle Scholar
  34. Sanders, T. H., McMichael, R. W., & Hendrix, K. W. (2000). Occurrence of resveratrol in edible peanuts. Journal of Agricultural and Food Chemistry, 48(4), 1243–1246.CrossRefGoogle Scholar
  35. Shahidi, F., & Wanasundara, U. N. (2002). Methods for measuring oxidative rancidity in fats and oils. Food Science and Technology, 117, 465–488.Google Scholar
  36. Talcott, S. T., Duncan, C. E., Pozo-Insfran, D. D., & Gorbet, D. W. (2005). Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chemistry, 89(1), 77–84.CrossRefGoogle Scholar
  37. USDA (2012a). Economics, statistics, and market information system: Oilseeds world market and trade. [11.09.2012].Google Scholar
  38. USDA (2012b). Economics, statistics, and market information system: Peanut stocks and processing. [11.28.2012].Google Scholar
  39. Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52(12), 4026–4037.CrossRefGoogle Scholar
  40. Ye, H., Zhou, C., Sun, Y., Zhang, X., Liu, J., Hu, Q., et al. (2009). Antioxidant activities in vitro of ethanol extract from brown seaweed Sargassum pallidum. European Food Research and Technology, 230(1), 101–109.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jonathan D. Wilkin
    • 1
  • Ian P. Ashton
    • 2
  • Louise M. Fielding
    • 2
  • Arthur S. Tatham
    • 2
    Email author
  1. 1.School of Contemporary SciencesUniversity of Abertay DundeeDundeeUK
  2. 2.Cardiff School of Health SciencesCardiff Metropolitan UniversityCardiffUK

Personalised recommendations