Food and Bioprocess Technology

, Volume 6, Issue 11, pp 3068–3075 | Cite as

Correlation Between Electrical Conductivity of the Gutted Fish Body and the Quality of Bighead Carp (Aristichthys nobilis) Heads Stored at 0 and 3 °C

  • Sichao Zhu
  • Yongkang Luo
  • Hui Hong
  • Ligeng Feng
  • Huixing Shen
Original Paper


The changes in impedance change ratio (Q value), pH value, texture, K value, total volatile basic nitrogen (TVB-N), total aerobic count (TAC), drip loss, and sensory assessment (SA) of bighead carp (Aristichthys nobilis) during 0 and 3 °C storage were investigated. Simultaneously, correlation models were developed by analyzing the correlation between the measured values. The results indicate that during postmortem storage, Q value is significantly (p < 0.05) related to pH value and texture indexes (hardness, adhesiveness, springiness, cohesiveness, and resilience); during long-term storage, SA exceeds the acceptable limit on the 15th day at 0 °C and the 12th day at 3 °C, while K value, TVB-N, TAC, and drip loss increase to 72.4 %, 18.9 mg/100 g, 4.82 log10 cfu/g, and 7.09 % at 0 °C, and 78.5 %, 14.0 mg/100 g, 4.97 log10 cfu/g, and 5.08 % at 3 °C, respectively. Meanwhile, Q value declines to 18.9 % at 0 °C and 12.7 % at 3 °C. The correlation coefficients between Q and K values, TVB-N, TAC, drip loss, and SA are 0.955, 0.964, 0.966, 0.965, and 0.994 at 0 °C, and 0.969, 0.967, 0.979, 0.960, and 0.996 at 3 °C, respectively, indicating significant linear relationships (p < 0.05). Therefore, Q value can be used as a fast nondestructive method to estimate the quality of bighead carp heads during storage at 0 and 3 °C.


Bighead carp Quality Impedance change ratio Correlation 


  1. Arndt, S., Seebach, J., Psathaki, K., Galla, H. J., & Wegener, J. (2004). Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosensors and Bioelectronics, 19(6), 583–594.CrossRefGoogle Scholar
  2. Barat, J. M., Gil, L., García-Breijoc, E., Aristoy, M. C., Toldrá, F., Martínez-Máñezd, R., & Soto, J. (2008). Freshness monitoring of sea bream (Sparus aurata) with a potentiometric. Food Chemistry, 108(2), 681–688.CrossRefGoogle Scholar
  3. Bøknæs, N., Jensen, K. N., Andersen, C. M., & Martens, H. (2002). Freshness assessment of thawed and chilled cod fillets packed in modified atmosphere using near-infrared spectroscopy. Food Science and Technology, 35(7), 628–634.Google Scholar
  4. Cakli, S., Kilinc, B., Cadun, A., Dincer, T., & Tolasa, S. (2006). Effect of ungutting on microbiological, chemical and sensory properties of aquacultured sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) stored in ice. European Food Research and Technology, 222(5), 719–726.CrossRefGoogle Scholar
  5. Cao, R., Xue, C., Liu, Q., & Yin, B. (2009). Microbiological, chemical and sensory assessment of (I) whole ungutted, (II) whole gutted and (III) filleted tilapia (Oreochromis niloticus) during refrigerated storage. International Journal of Food Science and Technology, 44(11), 2243–2248.CrossRefGoogle Scholar
  6. Castro-Giráldez, M., Botella, P., Toldrá, F., & Fito, P. (2010). Low-frequency dielectric spectrum to determine pork meat quality. Innovative food science and emerging technologies, 11(2), 376–386.CrossRefGoogle Scholar
  7. Chang, K. L. B., Chang, J., Shiau, C. Y., & Pan, B. S. (1998). Biochemical, microbiological, and sensory changes of sea bass (Lateolabrax japonicus) under partial freezing and refrigerated storage. Journal of Agricultural and Food Chemistry, 46(2), 682–686.CrossRefGoogle Scholar
  8. Chevalier, D., Bail, A. L., Chourot, J. M., & Chantreau, P. (1999). High pressure thawing of fish (whiting): influence of the process parameters on drip losses. LWT- Food Science and Technology, 32(1), 25–31.CrossRefGoogle Scholar
  9. Damez, J. L., & Clerjon, S. (2008). Meat quality assessment using biophysical methods related to meat structure. Meat Science, 80(1), 132–149.CrossRefGoogle Scholar
  10. Duncan, M., Craig, S. R., Lunger, A. N., Kuhn, D. D., Salze, G., & Mclean, E. (2007). Bioimpedance assessment of body composition in cobia Rachycentron canadum (L. 1766). Aquaculture, 271(1–4), 432–438.CrossRefGoogle Scholar
  11. Duun, A. S., & Rustad, T. (2008). Quality of superchilled vacuum packed Atlantic salmon (Salmo salar) fillets stored at −1.4 and −3.6 °C. Food Chemistry, 106(1), 122–131.CrossRefGoogle Scholar
  12. Fernández-Segovia, I., Fuentes, A., Aliño, M., Masot, R., Alcañiz, M., & Barat, J. M. (2012). Detection of frozen–thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 113(2), 210–216.CrossRefGoogle Scholar
  13. Ghaly, A. E., Dave, D., Budge, S., & Brooks, M. S. (2010). Fish spoilage mechanisms and preservation techniques: review. American Journal of Applied Sciences, 7(7), 846–864.CrossRefGoogle Scholar
  14. Grigorakis, K. (2007). Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: a review. Aquaculture, 272(1–4), 55–75.CrossRefGoogle Scholar
  15. Hamada-Sato, N., Okuma, H., & Watanabe, E. (2004). Theoretical consideration on estimation of the remaining days of validity (RDV) for fresh fish based on K value concept. Nippon Shokuhin Kagaku Kogaku Kaishi, 51(9), 495–504.CrossRefGoogle Scholar
  16. Hong, H., Luo, Y., Zhu, S., & Shen, H. (2012). Establishment of quality predictive models for bighead carp (Aristichthys nobilis) fillets during storage at different temperatures. International Journal of Food Science and Technology, 47(3), 488–494.CrossRefGoogle Scholar
  17. Hsieh, C. W., Lai, C. H., Lee, C. H., & Ko, W. C. (2011). Effects of high-voltage electrostatic fields on the quality of tilapia meat during refrigeration. Journal of Food Science, 76(6), M312–M317.CrossRefGoogle Scholar
  18. Kamalakanth, C. K., Ginson, J., Bindu, J., Venkateswarlu, R., Das, S., Chauhan, O. P., & Gopal, T. K. S. (2011). Effect of high pressure on K-value, microbial and sensory characteristics of yellowfin tuna (Thunnus albacares) chunks in EVOH films during chill storage. Innovative Food Science and Emerging Technologies, 12(4), 451–455.CrossRefGoogle Scholar
  19. Karoui, R., & Blecker, C. (2011). Fluorescence spectroscopy measurement for quality assessment of food systems—a review. Food and Bioprocess technology, 4(3), 364–386.CrossRefGoogle Scholar
  20. Miyasaki, T., Hamaguchi, M., & Yokoyama, S. (2011). Change of volatile compounds in fresh fish meat during ice storage. Journal of Food Science, 76(9), C1319–C1325.CrossRefGoogle Scholar
  21. Niu, J., & Lee, J. Y. (2000). A new approach for the determination of fish freshness by electrochemical impedance spectroscopy. Journal of Food Science, 65(5), 780–785.CrossRefGoogle Scholar
  22. Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193–198.CrossRefGoogle Scholar
  23. Olafsdóttir, G., Martinsdóttir, E., Oehlenschlager, J., Dalgaard, P., Jensen, B., Undeland, I., Mackie, I., Heneham, G., Nielsen, J., & Nielsen, H. (1997). Methods to evaluate fish freshness in research and industry. Trends in Food Science and Technology, 8(8), 258–265.CrossRefGoogle Scholar
  24. Skjervold, P. O., Røra, A. M. B., Fjæra, S. O., Vegusdal, A., Vorre, A., & Einen, O. (2001). Effects of pre-, in-, or post-rigor filleting of live chilled Atlantic salmon. Aquaculture, 194(3–4), 315–326.CrossRefGoogle Scholar
  25. Song, Y., Liu, L., Shen, H., You, J., & Luo, Y. (2011). Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 22(3–4), 608–615.CrossRefGoogle Scholar
  26. Song, Y., Luo, Y., You, J., Shen, H., & Hu, S. (2012). Biochemical, sensory and microbiological attributes of bream (Megalobrama amblycephala) during partial freezing and chilled storage. Journal of the Science of Food and Agriculture, 92(1), 197–202.CrossRefGoogle Scholar
  27. Taylor, R. G., Fjaera, S. O., & Skjervold, P. O. (2002). Salmon fillets texture is determined by myofiber–myofiber and myofiber–myocommata attachment. Food Chemistry and Toxicology, 67(6), 2067–2071.Google Scholar
  28. Thongprajukaew, K., Kovitvadhi, U., Kovitvadhi, S., Somsueb, P., & Rungruangsak-Torrissen, K. (2011). Effects of different modified diets on growth, digestive enzyme activities and muscle compositions in juvenile Siamese fighting fish (Betta splendens Regan, 1910). Aquaculture, 322–323, 1–9.CrossRefGoogle Scholar
  29. Traore, S., Aubry, L., Gatellier, P., Przybylski, W., Jaworska, D., Kaiak-Siemaszko, K., & Santé-Lhoutellier, V. (2011). Higher drip loss is associated with protein oxidation. Meat Science, 90(4), 917–924.CrossRefGoogle Scholar
  30. Vidačeka, S., Medića, H., Botka-Petrak, K., Nezak, J., & Petrak, T. (2008). Bioelectrical impedance analysis of frozen sea bass (Dicentrarchus labrax). Journal of Food Engineering, 88(2), 263–271.CrossRefGoogle Scholar
  31. Wegener, J., Hakvoort, A., & Galla, H. J. (2000). Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Research, 853(1), 115–124.CrossRefGoogle Scholar
  32. Willis, J., & Hobday, A. J. (2008). Application of bioelectrical impedance analysis as a method for estimating composition and metabolic condition of southern bluefin tuna (Thunnus maccoyii) during conventional tagging. Fisheries Research, 93(1–2), 64–71.CrossRefGoogle Scholar
  33. Yesudhason, P., Krshnaswamy, T., Gopal, S., Ravishankar, C. N., Lalitha, K. V., & Kumar, K. N. A. (2009). Effect of modified atmosphere packaging on chemical, textural, microbiological and sensory quality of seer fish (Scomberomorus commerson) steaks packaged in thermoformed trays at 0 °C. Journal of Food Processing and Preservation, 33(6), 777–797.CrossRefGoogle Scholar
  34. Zhang, J., Li, X., Wang, W., & Zhou, Z. (2009). Determination of freshness of freshwater fish based on BP-ANN and bio-impedance characteristics. In: Global Congress on Intelligent Systems, 19–21 May 2009, Xiamen, ChinaGoogle Scholar
  35. Zhang, L., Luo, Y., & Shen, H. (2010). Study on the electric conduction properties of fresh and frozen–thawed grass carp (Ctenopharyngodon idellus) and tilapia (Oreochromis niloticus). International Journal of Food Science and Technology, 45(12), 2560–2564.CrossRefGoogle Scholar
  36. Zhang, L., Shen, H., & Luo, Y. (2011). A nondestructive method for estimating freshness of freshwater fish. European Food Research and Technology, 232(6), 979–984.CrossRefGoogle Scholar
  37. Zhu, F., Zhang, D., He, Y., Liu, F., & Sun, D. (2012). Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen-thawed fish fillets. Food and Bioprocess Technology. doi:10.1007/s11947-012-0825-6.

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sichao Zhu
    • 1
  • Yongkang Luo
    • 1
  • Hui Hong
    • 1
  • Ligeng Feng
    • 1
  • Huixing Shen
    • 2
  1. 1.College of Food Science and Nutritional EngineeringChina Agricultural University, Beijing Higher Institution Engineering Research Center of Animal ProductBeijingChina
  2. 2.College of ScienceChina Agricultural UniversityBeijingChina

Personalised recommendations